36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The “Yin and Yang” of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.

          Related collections

          Most cited references288

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer.

          Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luteolin, a flavonoid with potential for cancer prevention and therapy.

            Luteolin, 3',4',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may be linked to its anticancer property. Luteolin's anticancer property is associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3'-kinase (PI3K)/Akt, nuclear factor kappa B (NF-kappaB), and X-linked inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention property to luteolin. In this review, we summarize the progress of recent research on luteolin, with a particular focus on its anticancer role and molecular mechanisms underlying this property of luteolin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.

              Studies were conducted on the flavonoids (myricetin, quercetin, kaempferol, luteolin, and apigenin) contents of 62 edible tropical plants. The highest total flavonoids content was in onion leaves (1497.5 mg/kg quercetin, 391.0 mg/kg luteolin, and 832.0 mg/kg kaempferol), followed by Semambu leaves (2041.0 mg/kg), bird chili (1663.0 mg/kg), black tea (1491.0 mg/kg), papaya shoots (1264.0 mg/kg), and guava (1128.5 mg/kg). The major flavonoid in these plant extracts is quercetin, followed by myricetin and kaempferol. Luteolin could be detected only in broccoli (74.5 mg/kg dry weight), green chili (33.0 mg/kg), bird chili (1035.0 mg/kg), onion leaves (391.0 mg/kg), belimbi fruit (202.0 mg/kg), belimbi leaves (464.5 mg/kg), French bean (11.0 mg/kg), carrot (37.5 mg/kg), white radish (9.0 mg/kg), local celery (80.5 mg/kg), limau purut leaves (30.5 mg/kg), and dried asam gelugur (107.5 mg/kg). Apigenin was found only in Chinese cabbage (187.0 mg/kg), bell pepper (272.0 mg/kg), garlic (217.0 mg/kg), belimbi fruit (458.0 mg/kg), French peas (176.0 mg/kg), snake gourd (42.4 mg/kg), guava (579.0 mg/kg), wolfberry leaves (547.0 mg/kg), local celery (338.5 mg/kg), daun turi (39.5 mg/kg), and kadok (34.5 mg/kg). In vegetables, quercetin glycosides predominate, but glycosides of kaempferol, luteolin, and apigenin are also present. Fruits contain almost exclusively quercetin glycosides, whereas kaempferol and myricetin glycosides are found only in trace quantities.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                21 September 2018
                October 2018
                : 10
                : 10
                : 346
                Affiliations
                [1 ]Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; elv2007@ 123456qatar-med.cornell.edu (E.V.); sms2016@ 123456qatar-med.cornell.edu (S.M.S.); mariam.abotaleb@ 123456aucegypt.edu (M.A.)
                [2 ]Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; soc2005@ 123456qatar-med.cornell.edu (S.C.); ram2026@ 123456qatar-med.cornell.edu (R.M.)
                Author notes
                [* ]Correspondence: dib2015@ 123456qatar-med.cornell.edu ; Tel.: +974-4492-8334; Fax: +974-4492-8333
                [†]

                Theses The authors contributed equally to the manuscript.

                Author information
                https://orcid.org/0000-0001-5196-3366
                Article
                cancers-10-00346
                10.3390/cancers10100346
                6209965
                30248941
                e24d50df-dea5-476b-8d62-fcc6e74a7a8a
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 August 2018
                : 19 September 2018
                Categories
                Review

                natural compounds,anticancer therapy,apoptosis,chemotherapy,signaling pathways,triple-negative breast cancers

                Comments

                Comment on this article