Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs.

Nature

Animals, Biological Evolution, Eukaryota, ultrastructure, Fossils, Oceans and Seas, Oxygen Isotopes, Plankton, Time, Tropical Climate

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Climate models with increased levels of carbon dioxide predict that global warming causes heating in the tropics, but investigations of ancient climates based on palaeodata have generally indicated cool tropical temperatures during supposed greenhouse episodes. For example, in the Late Cretaceous and Eocene epochs there is abundant geological evidence for warm, mostly ice-free poles, but tropical sea surface temperatures are generally estimated to be only 15-23 degrees C, based on oxygen isotope palaeothermometry of surface-dwelling planktonic foraminifer shells. Here we question the validity of most such data on the grounds of poor preservation and diagenetic alteration. We present new data from exceptionally well preserved foraminifer shells extracted from impermeable clay-rich sediments, which indicate that for the intervals studied, tropical sea surface temperatures were at least 28-32 degrees C. These warm temperatures are more in line with our understanding of the geographical distributions of temperature-sensitive fossil organisms and the results of climate models with increased CO2 levels.

      Related collections

      Most cited references 41

      • Record: found
      • Abstract: found
      • Article: not found

      Trends, rhythms, and aberrations in global climate 65 Ma to present.

      Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        The thermodynamic properties of isotopic substances.

         H C UREY (1947)
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño

            Bookmark

            Author and article information

            Journal
            11586350
            10.1038/35097000

            Comments

            Comment on this article