43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iron and Oxidative Stress in Parkinson’s Disease: An Observational Study of Injury Biomarkers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS) and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD), catalase (CAT), nitrosative stress marker (NOx), thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), advanced oxidation protein products (AOPP), ferric reducing ability of plasma (FRAP) and vitamin C) as well as inflammatory markers (NTPDases, ecto-5’-nucleotidase, adenosine deaminase (ADA), ischemic-modified albumin (IMA) and myeloperoxidase). Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP) and inflammatory markers (NTPDases, IMA, and myeloperoxidase) were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5’-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations observed in the pathophysiology of PD.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Screening for nutritional status in the elderly.

          A comprehensive assessment of nutritional status is a critically important component of any patient evaluation. Based upon clinical information, anthropometric data, and a small number of laboratory investigations, an accurate appraisal of nutritional status should be possible and an appropriate intervention plan can be developed. The actual approach depends on the particular problem discovered. These are discussed in detail elsewhere in this issue.
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting chelatable iron as a therapeutic modality in Parkinson's disease.

            The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD.
              • Record: found
              • Abstract: found
              • Article: not found

              Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia.

              Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were measured in various brain areas (substantia nigra, putamen, caudate nucleus, globus pallidus, and cerebral cortex) from patients dying with Parkinson's disease, progressive supranuclear palsy, multiple-system atrophy, and Huntington's disease and from control subjects with no neuropathological changes in substantia nigra. GSH levels were reduced in substantia nigra in Parkinson's disease patients (40% compared to control subjects) and GSSG levels were marginally (29%) but insignificantly elevated; there were no changes in other brain areas. The only significant change in multiple-system atrophy was an increase of GSH (196%) coupled with a reduction of GSSG (60%) in the globus pallidus. The only change in progressive supranuclear palsy was a reduced level of GSH in the caudate nucleus (51%). The only change in Huntington's disease was a reduction of GSSG in the caudate nucleus (50%). Despite profound nigral cell loss in the substantia nigra in Parkinson's disease, multiple-system atrophy, and progressive supranuclear palsy, the level of GSH in the substantia nigra was significantly reduced only in Parkinson's disease. This suggests that the change in GSH in Parkinson's disease is not solely due to nigral cell death, or entirely explained by drug therapy, for multiple-system atrophy patients were also treated with levodopa. The altered GSH/GSSG ratio in the substantia nigra in Parkinson's disease is consistent with the concept of oxidative stress as a major component in the pathogenesis of nigral cell death in Parkinson's disease.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                11 January 2016
                2016
                : 11
                : 1
                : e0146129
                Affiliations
                [1 ]Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
                [2 ]Natural and Exact Sciences Center, Graduate Program in Life Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
                [3 ]Department of Clinical and Toxicological Analyses, Universidade Federal de Santa Maria, Health Sciences Center, Santa Maria, Rio Grande do Sul, Brazil
                [4 ]Neuropsychiatry Department, University Hospital, Universidade Federal de Santa Maria, Health Sciences Center, Santa Maria, Rio Grande do Sul, Brazil
                The Pennsylvania State University Hershey Medical Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MRF. Performed the experiments: MRF MSM GVB AMC AK CMMBSC DS JB. Analyzed the data: MSM AS-S CRMR MRF. Contributed reagents/materials/analysis tools: MRF RNM MRCS CRMR. Wrote the paper: MSM AS-S CRMR MRF.

                Article
                PONE-D-15-29194
                10.1371/journal.pone.0146129
                4709097
                26751079
                e259edce-036d-4ffd-8aad-e1a5809ba4f5
                © 2016 Medeiros et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 July 2015
                : 14 December 2015
                Page count
                Figures: 0, Tables: 3, Pages: 12
                Funding
                This work was supported by CNPq (grant: 477587/2011-336 9), M. R. Fighera, M. R. C. Schetinger, R. N. Moresco and D. Santana are the recipients of CNPq fellowships. A. Kleger is the recipient of CAPES. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log