10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prolonged partial upper airway obstruction during sleep – an underdiagnosed phenotype of sleep-disordered breathing

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obstructive sleep apnea syndrome (OSAS) is a well-recognized disorder conventionally diagnosed with an elevated apnea–hypopnea index. Prolonged partial upper airway obstruction is a common phenotype of sleep-disordered breathing (SDB), which however is still largely underreported. The major reasons for this are that cyclic breathing pattern coupled with arousals and arterial oxyhemoglobin saturation are easy to detect and considered more important than prolonged episodes of increased respiratory effort with increased levels of carbon dioxide in the absence of cycling breathing pattern and repetitive arousals. There is also a growing body of evidence that prolonged partial obstruction is a clinically significant form of SDB, which is associated with symptoms and co-morbidities which may partially differ from those associated with OSAS. Partial upper airway obstruction is most prevalent in women, and it is treatable with the nasal continuous positive pressure device with good adherence to therapy. This review describes the characteristics of prolonged partial upper airway obstruction during sleep in terms of diagnostics, pathophysiology, clinical presentation, and comorbidity to improve recognition of this phenotype and its timely and appropriate treatment.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: found
          • Article: not found

          Prospective study of the association between sleep-disordered breathing and hypertension.

          Sleep-disordered breathing is prevalent in the general population and has been linked to chronically elevated blood pressure in cross-sectional epidemiologic studies. We performed a prospective, population-based study of the association between objectively measured sleep-disordered breathing and hypertension (defined as a laboratory-measured blood pressure of at least 140/90 mm Hg or the use of antihypertensive medications). We analyzed data on sleep-disordered breathing, blood pressure, habitus, and health history at base line and after four years of follow-up in 709 participants of the Wisconsin Sleep Cohort Study (and after eight years of follow-up in the case of 184 of these participants). Participants were assessed overnight by 18-channel polysomnography for sleep-disordered breathing, as defined by the apnea-hypopnea index (the number of episodes of apnea and hypopnea per hour of sleep). The odds ratios for the presence of hypertension at the four-year follow-up study according to the apnea-hypopnea index at base line were estimated after adjustment for base-line hypertension status, body-mass index, neck and waist circumference, age, sex, and weekly use of alcohol and cigarettes. Relative to the reference category of an apnea-hypopnea index of 0 events per hour at base line, the odds ratios for the presence of hypertension at follow-up were 1.42 (95 percent confidence interval, 1.13 to 1.78) with an apnea-hypopnea index of 0.1 to 4.9 events per hour at base line as compared with none, 2.03 (95 percent confidence interval, 1.29 to 3.17) with an apnea-hypopnea index of 5.0 to 14.9 events per hour, and 2.89 (95 percent confidence interval, 1.46 to 5.64) with an apnea-hypopnea index of 15.0 or more events per hour. We found a dose-response association between sleep-disordered breathing at base line and the presence of hypertension four years later that was independent of known confounding factors. The findings suggest that sleep-disordered breathing is likely to be a risk factor for hypertension and consequent cardiovascular morbidity in the general population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study.

            The effect of obstructive sleep apnoea-hypopnoea as a cardiovascular risk factor and the potential protective effect of its treatment with continuous positive airway pressure (CPAP) is unclear. We did an observational study to compare incidence of fatal and non-fatal cardiovascular events in simple snorers, patients with untreated obstructive sleep apnoea-hypopnoea, patients treated with CPAP, and healthy men recruited from the general population. We recruited men with obstructive sleep apnoea-hypopnoea or simple snorers from a sleep clinic, and a population-based sample of healthy men, matched for age and body-mass index with the patients with untreated severe obstructive sleep apnoea-hypopnoea. The presence and severity of the disorder was determined with full polysomnography, and the apnoea-hypopnoea index (AHI) was calculated as the average number of apnoeas and hypopnoeas per hour of sleep. Participants were followed-up at least once per year for a mean of 10.1 years (SD 1.6) and CPAP compliance was checked with the built-in meter. Endpoints were fatal cardiovascular events (death from myocardial infarction or stroke) and non-fatal cardiovascular events (non-fatal myocardial infarction, non-fatal stroke, coronary artery bypass surgery, and percutaneous transluminal coronary angiography). 264 healthy men, 377 simple snorers, 403 with untreated mild-moderate obstructive sleep apnoea-hypopnoea, 235 with untreated severe disease, and 372 with the disease and treated with CPAP were included in the analysis. Patients with untreated severe disease had a higher incidence of fatal cardiovascular events (1.06 per 100 person-years) and non-fatal cardiovascular events (2.13 per 100 person-years) than did untreated patients with mild-moderate disease (0.55, p=0.02 and 0.89, p<0.0001), simple snorers (0.34, p=0.0006 and 0.58, p<0.0001), patients treated with CPAP (0.35, p=0.0008 and 0.64, p<0.0001), and healthy participants (0.3, p=0.0012 and 0.45, p<0.0001). Multivariate analysis, adjusted for potential confounders, showed that untreated severe obstructive sleep apnoea-hypopnoea significantly increased the risk of fatal (odds ratio 2.87, 95%CI 1.17-7.51) and non-fatal (3.17, 1.12-7.51) cardiovascular events compared with healthy participants. In men, severe obstructive sleep apnoea-hypopnoea significantly increases the risk of fatal and non-fatal cardiovascular events. CPAP treatment reduces this risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sympathetic-nerve activity during sleep in normal subjects.

              The early hours of the morning after awakening are associated with an increased frequency of events such as myocardial infarction and ischemic stroke. The triggering mechanisms for these events are not clear. We investigated whether autonomic changes occurring during sleep, particularly rapid-eye-movement (REM) sleep, contribute to the initiation of such events. We measured blood pressure, heart rate, and sympathetic-nerve activity (using microneurography, which provides direct measurements of efferent sympathetic-nerve activity related to muscle blood vessels) in eight normal subjects while they were awake and while in the five stages of sleep. The mean (+/- SE) amplitude of bursts of sympathetic-nerve activity and levels of blood pressure and heart rate declined significantly (P < 0.001), from 100 +/- 9 percent, 90 +/- 4 mm Hg, and 64 +/- 2 beats per minute, respectively, during wakefulness to 41 +/- 9 percent, 80 +/- 4 mm Hg, and 59 +/- 2 beats per minute, respectively, during stage 4 of non-REM sleep. Arousal stimuli during stage 2 sleep elicited high-amplitude deflections on the electroencephalogram (called K complexes), which were frequently associated with bursts of sympathetic-nerve activity and transient increases in blood pressure. During REM sleep, sympathetic-nerve activity increased significantly (to 215 +/- 11 percent; P < 0.001) and the blood pressure and heart rate returned to levels similar to those during wakefulness. Momentary restorations of muscle tone during REM sleep (REM twitches) were associated with cessation of sympathetic-nerve discharge and surges in blood pressure. REM sleep is associated with profound sympathetic activation in normal subjects, possibly linked to changes in muscle tone. The hemodynamic and sympathetic changes during REM sleep could play a part in triggering ischemic events in patients with vascular disease.
                Bookmark

                Author and article information

                Journal
                Eur Clin Respir J
                Eur Clin Respir J
                ECRJ
                European Clinical Respiratory Journal
                Co-Action Publishing
                2001-8525
                06 September 2016
                2016
                : 3
                Affiliations
                [1 ]Division of Medicine, Department of Pulmonary Diseases, Turku University Hospital, Turku, Finland
                [2 ]Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
                [3 ]Sleep Research Centre, Department of Physiology, University of Turku, Turku, Finland
                [4 ]Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere University Hospital, Tampere, Finland
                [5 ]Department of Medical Physics, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere University Hospital, Tampere, Finland
                [6 ]School of Medicine, University of Tampere, Tampere, Finland
                [7 ]Unesta Research Center, Tampere, Finland
                [8 ]Department of Pulmonary Diseases, Tampere University Hospital, Tampere, Finland
                [9 ]Department of Clinical Neurophysiology, Satakunta Hospital District, Pori, Finland
                Author notes
                [* ]Correspondence to: Ulla Anttalainen, Sleep Research Center, Lemminkäisenkatu 3B, 20520 Turku, Finland, Email: ulla.anttalainen@ 123456tyks.fi

                Responsible Editor: Eva Lindberg, Uppsala University, Sweden.

                Article
                31806
                10.3402/ecrj.v3.31806
                5015642
                27608271
                © 2016 Ulla Anttalainen et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

                Categories
                Review Article

                Comments

                Comment on this article