Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autistic adults show preserved normalisation of sensory responses in gaze processing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Progress in our understanding of autism spectrum disorder (ASD) has recently been sought by characterising how systematic differences in canonical neural computations employed across the sensory cortex might contribute to clinical symptoms in diverse sensory, cognitive, and social domains. A key proposal is that ASD is characterised by reduced divisive normalisation of sensory responses. This provides a bridge between genetic and molecular evidence for an increased ratio of cortical excitation to inhibition in ASD and the functional characteristics of sensory coding that are relevant for understanding perception and behaviour. Here we tested this hypothesis in the context of gaze processing (i.e., the perception of other people's direction of gaze), a domain with direct relevance to the core diagnostic features of ASD. We show that reduced divisive normalisation in gaze processing is associated with specific predictions regarding the psychophysical effects of sensory adaptation to gaze direction, and test these predictions in adults with ASD. We report compelling evidence that both divisive normalisation and sensory adaptation occur robustly in adults with ASD in the context of gaze processing. These results have important theoretical implications for defining the types of divisive computations that are likely to be intact or compromised in this condition (e.g., relating to local vs distal control of cortical gain). These results are also a strong testament to the typical sensory coding of gaze direction in ASD, despite the atypical responses to others' gaze that are a hallmark feature of this diagnosis.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Neocortical excitation/inhibition balance in information processing and social dysfunction.

          Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene hunting in autism spectrum disorder: on the path to precision medicine.

            Autism spectrum disorder is typical of the majority of neuropsychiatric syndromes in that it is defined by signs and symptoms, rather than by aetiology. Not surprisingly, the causes of this complex human condition are manifold and include a substantial genetic component. Recent developments in gene-hunting technologies and methods, and the resulting plethora of genetic findings, promise to open new avenues to understanding of disease pathophysiology and to contribute to improved clinical management. Despite remarkable genetic heterogeneity, evidence is emerging for converging pathophysiology in autism spectrum disorder, but how this notion of convergent pathways will translate into therapeutics remains to be established. Leveraging genetic findings through advances in model systems and integrative genomic approaches could lead to the development of new classes of therapies and a personalised approach to treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organization and functions of cells responsive to faces in the temporal cortex.

              Cells selectively responsive to the face have been found in several visual sub-areas of temporal cortex in the macaque brain. These include the lateral and ventral surfaces of inferior temporal cortex and the upper bank, lower bank and fundus of the superior temporal sulcus (STS). Cells in the different regions may contribute in different ways to the processing of the facial image. Within the upper bank of the STS different populations of cells are selective for different views of the face and head. These cells occur in functionally discrete patches (3-5 mm across) within the STS cortex. Studies of output connections from the STS also reveal a modular anatomical organization of repeating 3-5 mm patches connected to the parietal cortex, an area thought to be involved in spatial awareness and in the control of attention. The properties of some cells suggest a role in the discrimination of heads from other objects, and in the recognition of familiar individuals. The selectivity for view suggests that the neural operations underlying face or head recognition rely on parallel analyses of different characteristic views of the head, the outputs of these view-specific analyses being subsequently combined to support view-independent (object-centred) recognition. An alternative functional interpretation of the sensitivity to head view is that the cells enable an analysis of 'social attention', i.e. they signal where other individuals are directing their attention. A cell maximally responsive to the left profile thus provides a signal that the attention (of another individual) is directed to the observer's left. Such information is useful for analysing social interactions between other individuals.(ABSTRACT TRUNCATED AT 250 WORDS)
                Bookmark

                Author and article information

                Contributors
                Journal
                Cortex
                Cortex
                Cortex; a Journal Devoted to the Study of the Nervous System and Behavior
                Masson
                0010-9452
                1973-8102
                1 June 2018
                June 2018
                : 103
                : 13-23
                Affiliations
                [a ]School of Psychology, UNSW Sydney, NSW, Australia
                [b ]Institute of Cognitive Neuroscience, UCL, London, UK
                [c ]Wellcome Trust Centre for Neuroscience, UCL, London, UK
                [d ]Department of Psychology, University of Cambridge, Cambridge, UK
                Author notes
                [] Corresponding author. School of Psychology, UNSW Sydney, NSW, 2052, Australia. Colin.Palmer@ 123456unsw.edu.au
                [1]

                These authors contributed equally.

                Article
                S0010-9452(18)30043-1
                10.1016/j.cortex.2018.02.005
                6002613
                29549871
                © 2018 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Neurology

                neural computation, gaze perception, adaptation, divisive normalisation, autism

                Comments

                Comment on this article