56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pro-Aging Effects of Glucose Signaling through a G Protein-Coupled Glucose Receptor in Fission Yeast

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Gα subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Δgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.

          Author Summary

          Lowering caloric intake by limiting glucose (the preferred carbon and energy source) increases life span in various species. Excess glucose can have deleterious effects, but it is not clear whether this is due to the caloric contribution of glucose or to some other effect. Glucose sensed by the cells activates signaling pathways that, in yeast, favor the metabolic machinery that makes energy (glycolysis) and cell growth. The sensing of glucose also reduces stress resistance and the ability to live long. Does glucose provoke a pro-aging effect as a result of its metabolic activity or by activating signaling pathways? Here we addressed this question by studying the role of a glucose-signaling pathway in the life span of the fission yeast S. pombe. Genetic inactivation of the glucose-signaling pathway prolonged life span in this yeast, while its constitutive activation shortened it and blocked the longevity effects of calorie restriction. The pro-aging effects of glucose signaling correlated with a decrease in mitochondrial respiration and an increase in reactive oxygen species production. Moreover, a strain without glucose metabolism is still sensitive to detrimental effects of glucose due to signaling. Our work shows that glucose signaling through the glucose receptor GIT3 constitutes the main cause responsible for the pro-aging effects of glucose in fission yeast.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients.

          Calorie restriction increases life span in many organisms, including the budding yeast Saccharomyces cerevisiae. From a large-scale analysis of 564 single-gene-deletion strains of yeast, we identified 10 gene deletions that increase replicative life span. Six of these correspond to genes encoding components of the nutrient-responsive TOR and Sch9 pathways. Calorie restriction of tor1D or sch9D cells failed to further increase life span and, like calorie restriction, deletion of either SCH9 or TOR1 increased life span independent of the Sir2 histone deacetylase. We propose that the TOR and Sch9 kinases define a primary conduit through which excess nutrient intake limits longevity in yeast.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.

            Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in life-span. This extension was not observed in strains mutant for SIR2 (which encodes the silencing protein Sir2p) or NPT1 (a gene in a pathway in the synthesis of NAD, the oxidized form of nicotinamide adenine dinucleotide). These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pyruvate metabolism in Saccharomyces cerevisiae.

              In yeasts, pyruvate is located at a major junction of assimilatory and dissimilatory reactions as well as at the branch-point between respiratory dissimilation of sugars and alcoholic fermentation. This review deals with the enzymology, physiological function and regulation of three key reactions occurring at the pyruvate branch-point in the yeast Saccharomyces cerevisiae: (i) the direct oxidative decarboxylation of pyruvate to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex, (ii) decarboxylation of pyruvate to acetaldehyde, catalysed by pyruvate decarboxylase, and (iii) the anaplerotic carboxylation of pyruvate to oxaloacetate, catalysed by pyruvate carboxylase. Special attention is devoted to physiological studies on S. cerevisiae strains in which structural genes encoding these key enzymes have been inactivated by gene disruption.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2009
                March 2009
                6 March 2009
                : 5
                : 3
                : e1000408
                Affiliations
                [1 ]Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
                [2 ]Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
                Washington University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: AER CSH PC GF LAR. Performed the experiments: AER AL MAA PC. Analyzed the data: AER CSH PC GF LAR. Contributed reagents/materials/analysis tools: CSH GF LAR. Wrote the paper: AER CSH PC GF LAR.

                Article
                08-PLGE-RA-1267R2
                10.1371/journal.pgen.1000408
                2646135
                19266076
                e2887be0-8fde-4151-9459-0646e8c7faf8
                Roux et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 September 2008
                : 5 February 2009
                Page count
                Pages: 17
                Categories
                Research Article
                Cell Biology/Cell Signaling
                Cell Biology/Cellular Death and Stress Responses
                Cell Biology/Gene Expression
                Cell Biology/Microbial Physiology and Metabolism

                Genetics
                Genetics

                Comments

                Comment on this article