15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Expression Analysis of Hypothalamic and Pituitary Components of the Growth Hormone Axis in Fasted and Streptozotocin-Treated Neuropeptide Y (NPY)-Intact (NPY +/+) and NPY-Knockout (NPY –/–) Mice

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the fasted and the streptozotocin (STZ)-induced diabetic male rat, hypothalamic growth hormone (GH)-releasing hormone (GHRH) mRNA levels, and pulsatile GH release are decreased. These changes are believed to be due to a rise in hypothalamic neuropeptide Y (NPY) that inhibits GHRH expression. To directly test if NPY is required for metabolic regulation of hypothalamic neuropeptides important in GH secretion, NPY, GHRH and somatostatin (SRIH) mRNA levels were determined in fasted (48 h) and STZ-treated wild-type (NPY<sup>+/+</sup>) and NPY-knockout (NPY<sup>–/–</sup>) mice by ribonuclease protection assay. In addition, pituitary receptor mRNA levels for GHRH (GHRH-R), ghrelin (GHS-R) and SRIH (sst2) were assessed by RT-PCR. Under fed conditions the GH axis of NPY<sup>+/+</sup> and NPY<sup>–/–</sup> did not differ. In the NPY<sup>+/+</sup> mouse, fasting resulted in a 23% weight loss and >250% increase in NPY mRNA accompanied by a significant reduction in both GHRH and SRIH mRNA. These changes were associated with increases in pituitary expression of GHRH-R and GHS-R and a concomitant suppression of sst2. In the NPY<sup>–/–</sup> mouse, fasting also resulted in a 23% weight loss and comparable changes in GHRH-R and sst2, but failed to alter GHRH, SRIH and GHS-R mRNA levels. Fasting resulted in an overall increase in circulating GH, which reached significance in the fasted NPY<sup>–/–</sup> mouse. Induction of diabetes in NPY<sup>+/+</sup> mice, using a single, high-dose, STZ injection (150 mg/kg), resulted in modest weight loss (5%), and a 158% increase NPY expression which was associated with reciprocal changes in pituitary GHS-R and sst2 expression, similar to that observed in the fasted state, but no change in hypothalamic GHRH or SRIF expression was observed. Induction of diabetes in NPY<sup>+/+</sup> and NPY<sup>–/–</sup> mice, using a multiple, low-dose, STZ paradigm (5 consecutive daily injections of 40 mg/kg), did not alter body weight, hypothalamic neuropeptide expression or pituitary receptor expression, with the exception that sst2 mRNA levels were suppressed and GH levels did rise in the NPY<sup>–/–</sup> mouse. These observations demonstrate that NPY is not required for basal regulation of the GH axis, but is required for fasting-induced suppression of GHRH and SRIH expression, as well as fasting-induced augmentation of pituitary GHS-R mRNA. In contrast to the rat, fasting clearly did not suppress circulating GH levels in mice, but resulted in an overall rise in mean GH levels, similar to that observed in other mammalian species. The fact that many of the fasting-induced changes in the GH axis were observed in the high-dose STZ-treated mice, but were not observed in the multiple, low-dose paradigm, suggests STZ-mediated modulation of GH axis function is dependent on the severity of the catabolic state and not hyperglycemia.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Iron and microbial infection.

          The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. It is also a pivotal component of the innate immune response through its role in the generation of toxic oxygen and nitrogen intermediates. During evolution, the shared requirement of micro- and macroorganisms for this important nutrient has shaped the pathogen-host relationship. Here, we discuss how pathogens compete with the host for iron, and also how the host uses iron to counteract this threat.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity.

            We report the isolation and characterization of a novel human peptide with antimicrobial activity, termed LEAP-1 (liver-expressed antimicrobial peptide). Using a mass spectrometric assay detecting cysteine-rich peptides, a 25-residue peptide containing four disulfide bonds was identified in human blood ultrafiltrate. LEAP-1 expression was predominantly detected in the liver, and, to a much lower extent, in the heart. In radial diffusion assays, Gram-positive Bacillus megaterium, Bacillus subtilis, Micrococcus luteus, Staphylococcus carnosus, and Gram-negative Neisseria cinerea as well as the yeast Saccharomyces cerevisiae dose-dependently exhibited sensitivity upon treatment with synthetic LEAP-1. The discovery of LEAP-1 extends the known families of mammalian peptides with antimicrobial activity by its novel disulfide motif and distinct expression pattern.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice.

              The body growth of animals is regulated by growth hormone and IGF-I. The classical theory of this regulation is that most IGF-I in the blood originates in the liver and that body growth is controlled by the concentration of IGF-I in the blood. We have abolished IGF-I production in the livers of mice by using the Cre/loxP recombination system. These mice demonstrated complete inactivation of the IGF-I gene in the hepatocytes. Although the liver accounts for less than 5% of body mass, the concentration of IGF-I in the serum was reduced by 75%. This finding confirms that the liver is the principal source of IGF-I in the blood. However, the reduction in serum IGF-I concentration had no discernible effect on postnatal body growth. We conclude that postnatal body growth is preserved despite complete absence of IGF-I production by the hepatocytes.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2005
                November 2005
                30 November 2005
                : 81
                : 6
                : 360-371
                Affiliations
                aSection of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA; bDepartment of Pharmacology and Institute for Basic Medical Science, Kyunghee University School of Medicine, Seoul, Korea
                Article
                89101 Neuroendocrinology 2005;81:360–371
                10.1159/000089101
                16244497
                e293a077-7ce9-48b5-aead-9f417e9f0340
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 26 May 2005
                : 29 August 2005
                Page count
                Figures: 4, Tables: 1, References: 85, Pages: 12
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Transgenic mice,Hyperglycemia,Fasting,Growth hormone-releasing hormone,Growth hormone,Streptozotocin,Diabetes,Somatostatin,Neuropeptide Y

                Comments

                Comment on this article