3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      AIK-C measles vaccine expressing fusion protein of respiratory syncytial virus induces protective antibodies in cotton rats

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants, and no vaccine is available. In this report, recombinant AIK-C measles vaccines, expressing the RSV G or F protein of subgroup A (MVAIK/RSV/G or F), were investigated as a RSV vaccine candidate. MVAIK/RSV/G or F had the original ts phenotype and expressed RSV/G or F protein. Cross-reactive neutralizing antibodies against RSV subgroups A and B were detected in cotton rats immunized intramuscularly with MVAIK/RSV/F but not MVAIK/RSV/G. In cotton rats infected with RSV, RSV was recovered and lung histopathological finding was compatible with interstitial pneumonia, demonstrating thickening of alveolar walls and infiltration of mononuclear cells. When cotton rats immunized with MVAIK/RSV/F were challenged with homologous RSV subgroup A, no infectious RSV was recovered and very mild inflammation was noted without RSV antigen expression. When they were challenged with subgroup B, protective efficacy decreased. When cotton rats immunized with MVAIK/RSV/G were challenged with RSV subgroup A, low levels of infectious virus were recovered from lung. When challenged with subgroup B, no protective effects was demonstrated, demonstrating large amounts of RSV antigen in bronchial-epithelial cells. MVAIK/RSV/F is promising candidate and protective effects should be confirmed in monkey model.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Role for Immune Complexes in Enhanced Respiratory Syncytial Virus Disease

            Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral pneumonia in infants and young children. Administration of a formalin inactivated vaccine against RSV to children in the 1960s resulted in increased morbidity and mortality in vaccine recipients who subsequently contracted RSV. This incident precluded development of subunit RSV vaccines for infants for over 30 years, because the mechanism of illness was never clarified. An RSV vaccine for infants is still not available. Here, we demonstrate that enhanced RSV disease is mediated by immune complexes and abrogated in complement component C3 and B cell–deficient mice but not in controls. Further, we show correlation with the enhanced disease observed in children by providing evidence of complement activation in postmortem lung sections from children with enhanced RSV disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy--a review.

              Infection of infants in their first year of life, children and elderly people with the respiratory syncytial virus (RSV) endangers the life of the patient. An attempt to develop a formalin-inactivated RSV (FI-RSV) vaccine during the 1960s resulted in an aggravated infection in immunized children, leading to hospitalization, while infection of non-immunized children produced much milder symptoms. The reason for this remained an enigma, one which was gradually solved over the last decade by many researchers who studied the molecular biology of RSV infection of respiratory ciliary cells. Clinical studies of RSV-infected patients indicated increased levels of Th2 cytokines and IgE in the patients' sera, suggesting that an allergy-like condition developed during infection. The biomarkers of allergy caused by endogenous or environmental allergens include a marked increase of the Th2 cytokine IL-4 and IgE non-neutralizing antibodies to the allergen. The way allergens trigger allergy was deciphered recently, and will be discussed later. Studies of RSV infection led to the suggestion that RSV patients suffer from allergy prior to RSV infection, a concept that was later abandoned. Studies on HIV-1 [Y. Becker, Virus Genes 28, 319-331 (2005)] research led me to the hypothesis that since HIV-1 infection induces a marked increase of IL-4 and IgE in serum, an allergy-like condition, the AIDS stage is the result of an allergen motif that is embedded in the shed viral gp120 molecules. It is hypothesized that the viral-soluble G glycoprotein (sG) contains a T cell superantigen (Tsag) that is capable of binding to the V(H)3 domain of IgE/FcepsilonRI(+) hematopoietic cells, basophils, mast cells and monocytes, similar to the case of allergens, and that this aggregation causes these innate system cells to degranulate and release large amounts of Th2 cytokines (IL-4, IL-5, IL-10, IL-13) into the blood. The way these Th2 cytokines skew the Th1/Th2 balance toward Th2 > Th1 will be discussed. The aim of the present review is to base RSV pathogenicity on the numerous very good analyses of the virus genes and to suggest a therapeutic approach to treatment that is directed at preventing the inhibitory effects of Th2 cytokines on the adaptive immune system of the patients, instead of inhibiting RSV replication by antivirals. The review of the molecular research on the role of the viral fusion (F) and attachment (G) glycoproteins of RSV provided information on their role in the virus infection: early in infection the F glycoprotein induces Th1 cells to release the Th1 cytokines IL-2, IL-12 and IFN-gamma to activate precursors CTLs (pCTLs) to become anti-RSV CTLs. The G and sG glycoproteins attach to FKNR1(+) ciliary respiratory epithelial cells as well as directly to eosinophils to the lungs. The sG T cell antigen can also induce the release of large amounts of Th2 cytokines from CD4(+) T cells and from FCepsilonRI(+) mast cells, basophils and monocytes. By comparison to HIV-1 gp120 it is possible to show that in the G and sG proteins the T cell antigen resembles the CD4(+) T cell superantigen (=allergen) domain of HIV-1 gp120 which aggregates with IgE/FCepsilonRI(+) hematopoietic cells. The increased IL-4 level in the serum inhibits the adaptive immune response: IL-4Ralpha(+) Th1 cells stop Th1 cytokine synthesis and IL-4Ralpha(+) B cells stop the synthesis of antiviral IgG and IgA and switch to IgE synthesis. In addition, the hematopoietic cells release histamine and prostaglandin which induce wheezing. The gradual increase of sG molecules creates a gradient of fractalkine (FKN) which directs IL-5-activated eosinophils to the lungs of the patient.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vaccine
                Vaccine
                Vaccine
                Elsevier Ltd.
                0264-410X
                1873-2518
                24 December 2010
                4 February 2011
                24 December 2010
                : 29
                : 7
                : 1481-1490
                Affiliations
                [a ]Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
                [b ]Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
                Author notes
                [* ]Corresponding author. Tel.: +81 3 5791 6269; fax: +81 3 5791 6130. tetsuo-n@ 123456lisci.kitasato-u.ac.jp
                Article
                S0264-410X(10)01780-9
                10.1016/j.vaccine.2010.12.028
                7127509
                21185852
                e2a789f7-94c1-47bf-b594-5f05ddc32b68
                Copyright © 2010 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 3 June 2010
                : 29 November 2010
                : 9 December 2010
                Categories
                Article

                Infectious disease & Microbiology
                measles virus (mv),respiratory syncytial virus (rsv),cotton rat,neutralizing antibodies

                Comments

                Comment on this article