8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function

      , , ,
      Proceedings of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is becoming increasingly clear that intraspecific evolutionary divergence influences the properties of populations, communities and ecosystems. The different ecological impacts of phenotypes and genotypes may alter selection on many species and promote a cascade of ecological and evolutionary change throughout the food web. Theory predicts that evolutionary interactions across trophic levels may contribute to hypothesized feedbacks between ecology and evolution. However, the importance of 'cascading evolutionary change' in a natural setting is unknown. In lakes in Connecticut, USA, variation in migratory behaviour and feeding morphology of a fish predator, the alewife (Alosa pseudoharengus), drives life-history evolution in a species of zooplankton prey (Daphnia ambigua). Here we evaluated the reciprocal impacts of Daphnia evolution on ecological processes in laboratory mesocosms. We show that life-history evolution in Daphnia facilitates divergence in rates of population growth, which in turn significantly alters consumer-resource dynamics and ecosystem function. These experimental results parallel trends observed in lakes. Such results argue that a cascade of evolutionary change, which has occurred over contemporary timescales, alters community and ecosystem processes.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Predation, Body Size, and Composition of Plankton.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phenotypic similarity and the evolutionary significance of countergradient variation.

            Countergradient variation is a geographical pattern of genotypes (with respect to environments) in which genetic influences on a trait oppose environmental influences, thereby minimizing phenotypic change along the gradient. Phenotypic similarity across changing environments ought to be of intense interest because it belies considerable genotypic change. When it occurs in characters that are positively associated with fitness, countergradient variation conflicts with the hypothesis that local adaptation to one environment trades off against performance in another environment. Cases of countergradient variation therefore offer unique insight into the mechanisms that produce and maintain phenotypic similarity and/or differences along environmental gradients. Copyright © 1995. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of Lake Primary Productivity by Food Web Structure

              We performed whole-lake manipulations of fish populations to test the hypothesis that higher trophic levels regulate zooplankton and phytoplankton community structure, biomass, and primary productivity. The study involved three lakes and spanned 2 yr. Results demonstrated hierarchical control of primary production by abiotic factors and a trophic cascade involving fish predation. In Paul Lake, the reference lake, productivity varied from year to year, illustrating the effects of climatic factors and the natural dynamics of unmanipulated food web interactions. In Tuesday Lake, piscivore addition and planktivore reduction caused an increase in zooplankton biomass, a compositional shift from a copepod/rotifer assemblage to a cladoceran assemblage, a reduction in algal biomass, and a continuous reduction in primary productivity. In Peter Lake, piscivore reduction and planktivore addition decreased zooplanktivory, because potential planktivores remained in littoral refugia to escape from remaining piscivores. Both zooplankton biomass and the dominance of large cladocerans increased. Algal biomass and primary production increased because of increased concentrations of gelatinous colonial green algae. Food web effects and abiotic factors were equally potent regulators of primary production in these experiments. Some of the unexplained variance in primary productivity of the world's lakes may be attributed to variability in fish populations and its effects on lower trophic levels.
                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proceedings of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8452
                1471-2954
                July 11 2012
                May 23 2012
                : 279
                : 1741
                : 3184-3192
                Article
                10.1098/rspb.2012.0496
                3385726
                22628469
                e2b4a32e-c8bc-482e-86f8-91fe12a79f61
                © 2012
                History

                Comments

                Comment on this article