0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy.

      Seminars in liver disease
      ATP-Binding Cassette Transporters, physiology, Bile, metabolism, Bile Acids and Salts, Cholestasis, chemically induced, genetics, physiopathology, Cholestasis, Intrahepatic, diagnosis, Female, Genetic Predisposition to Disease, Hepatocytes, drug effects, Humans, Organic Anion Transporters, P-Glycoproteins, Pregnancy, Pregnancy Complications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intrahepatic cholestasis of pregnancy and drug-induced cholestasis are two clinically important forms of acquired cholestatic liver disease. The understanding of the underlying mechanisms of acquired cholestasis has recently made considerable progress by the identification of canalicular ATP-binding cassette (ABC) transporters as likely targets for these forms of cholestasis. Cholestasis of pregnancy is linked to estrogen and progesterone metabolites. These metabolites have been shown to impair the bile salt export pump (BSEP) function by an indirect mechanism. In addition, genetic variants (as well as mutants) of the genes coding for the phosphatidylcholine translocator MDR3 and BSEP and for the farnesoid X receptor, which is critical in the transcriptional activation of MDR3 ( ABCB4) and BSEP ( ABCB11) have been associated with intrahepatic cholestasis of pregnancy. The pathogenesis of drug-induced liver injury encompasses a wide spectrum of mechanisms, some of which are still poorly understood. BSEP is now known to be subject to drug inhibition in susceptible patients. Information on genetic factors rendering individuals susceptible to inhibition of BSEP by drugs or their metabolites is still scarce. Besides rare mutations that have been linked to drug-induced cholestasis, the common p.V444A polymorphism of BSEP has been identified as a potential risk factor. In this review, the authors summarize key concepts of physiology of bile formation, diagnostic principles to indentify these forms of acquired cholestasis, as well as pathogenetic mechanisms leading to intrahepatic cholestasis of pregnancy or drug-induced cholestasis. In addition, they review the current knowledge on genetic susceptibility factors for these two forms of cholestasis.

          Related collections

          Author and article information

          Comments

          Comment on this article