9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shoot organogenesis and somatic embryogenesis from leaf and root explants of Scaevola sericea

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An efficient regeneration system via shoot organogenesis and somatic embryogenesis from in vitro leaf and root explants was established for Scaevola sericea for the first time. The highest axillary shoot proliferation coefficient (4.8) was obtained on Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 6-benzyladenine (BA) and 0.1 mg/L α-naphthaleneacetic acid (NAA) every 45 days. Young in vitro leaves and roots, which were used as explants, were cultured onto medium supplemented with different plant growth regulators. Our results showed that only cytokinins BA and thidiazuron (TDZ), could induce adventitious shoots and somatic embryos from leaf and root explants. The optimal medium to achieve this was MS medium supplemented with 2.5 mg/L BA and which induced most adventitious shoots (2.7) and somatic embryos (17.3) from leaf explants within 30 days. From root explants, 1.1 adventitious shoots and 7.6 somatic embryos could be induced on MS medium supplemented with 2.5 mg/L TDZ. Histological observation showed that both somatic embryos and adventitious shoots were originated from homogeneous parenchyma and the development of somatic embryos was visible. Maximum rooting percentage (99.0%) was achieved on half-strength MS medium supplemented with 2.5 mg/L NAA. Well-rooted plantlets, which were transplanted into a substrate of pure river sand, displayed a high survival percentage of 91.7% after transplanting for 45 days while the best substrate for plantlet growth was river sand: coral sand (1:1).

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants.

          Selected plants having a history of use in Polynesian traditional medicine for the treatment of infectious disease were investigated for anti-viral, anti-fungal and anti-bacterial activity in vitro. Extracts from Scaevola sericea, Psychotria hawaiiensis, Pipturus albidus and Eugenia malaccensis showed selective anti-viral activity against Herpes Simplex Virus-1 and 2 and Vesicular Stomatitis Virus. Aleurites moluccana extracts showed anti-bacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, while Pipturus albidus and Eugenia malaccensis extracts showed growth inhibition of Staphylococcus aureus and Streptococcus pyogenes. Psychotria hawaiiensis and Solanum niger inhibited growth of the fungi Microsporum canis, Trichophyton rubrum and Epidermophyton floccosum, while Ipomoea sp., Pipturus albidus, Scaevola sericea, Eugenia malaccensis, Piper methysticum, Barringtonia asiatica and Adansonia digitata extracts showed anti-fungal activity to a lesser extent. Eugenia malaccensis was also found to inhibit the classical pathway of complement suggesting that an immunological basis for its in vivo activity was identified. This study has confirmed some of the ethnobotanical reports of Hawaiian medicinal plants having curative properties against infections using biological assays in vitro.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiviral activity of Hawaiian medicinal plants against human immunodeficiency Virus Type-1 (HIV-1).

            Hawaiian medicinal plants commonly used for the treatment of a variety of infections were screened for antiviral activity against human immunodeficiency virus type 1 (HIV-1). Sixty-one extracts derived from seventeen plants were tested for selective viral growth inhibition using the LAI (HTLV-IIIB) isolate. The greatest degree of antiviral activity was observed with aqueous extracts made from the bark of Eugenia malaccensis (L.) and the leaves of Pluchea indica (Less.) which had antiviral selectivity indices (50% cytotoxic concentration/50% effective antiviral concentration) of 109 and 94, respectively. These and other extracts conferred 100% cell protection against viral cytopathic effect when compared with control samples. Methanol and water extracts made from the Pipturus albidus (Gray) leaves and bark also achieved a high selective inhibition of virus replication with very low cytotoxicity. Plant extracts made from Aleurites moluccana (Willd.), Psychotria hawaiiensis (Gray), Clermontia aborescens (Mann), and Scaevola sericea (Forst.) also showed antiviral activity. These data provide a rationale for the characterization of antiviral natural products from these plants and related plant species. Copyright © 1996 Gustav Fischer Verlag, Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata mast.

              Different concentrations of 6-benzyladenine (6-BA) were used in vitro to induce buds in three types of explants: leaf discs, root segments and the seedling itself obtained from in vitro seed germination of Passiflora cincinnata Mast. The 0.5 mg.L -1 6-BA concentration was most suitable for all the three explants, however, bud formation time and means (direct/indirect) were different for each type of explant. In seedlings used as explants, it had shoot regeneration from the primary root. Histological events leading to bud formation via meristemoids were described. The origin was indirect in leaf discs, with callus formation in subepidermal cells of the chlorophyll parenchyma layers. In root segments and in seedling roots, the buds were formed directly in the pericycle (in roots with some secondary structure) and in the vascular cambium (at the initial phase of secondary structure). Also, indirect buds originated from meristemoids which were formed around the callus.
                Bookmark

                Author and article information

                Contributors
                jaimetex@yahoo.com
                youhuachina@126.com
                magh@scib.ac.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 July 2020
                9 July 2020
                2020
                : 10
                Affiliations
                [1 ]ISNI 0000000119573309, GRID grid.9227.e, Guangdong Provincial Key Laboratory of Applied Botany and Engineering Laboratory for Vegetation Ecosystem Restoration On Islands and Coastal Zones, South China Botanical Garden, , The Chinese Academy of Sciences, ; Guangzhou, 510650 China
                [2 ]ISNI 0000 0004 1790 4030, GRID grid.449900.0, College of Horticulture and Landscape Architecture, , Zhongkai University of Agriculture and Engineering, ; Guangzhou, 510225 China
                [3 ]Miki-cho Post Office, P.O. Box 7, Ikenobe 3011-2, Miki-cho, Kagawa-ken 761-0799 Japan
                [4 ]ISNI 0000 0004 1797 8419, GRID grid.410726.6, University of Chinese Academy of Sciences, ; Beijing, 100039 China
                [5 ]ISNI 0000 0004 0415 7259, GRID grid.452720.6, Cash Crop Institute of Guangxi Academy of Agricultural Sciences, ; Nanning, China
                Article
                68084
                10.1038/s41598-020-68084-1
                7347615
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: National Key Research and Development Program of China
                Award ID: 2016YFC1403000/2016YFC1403002
                Funded by: Strategic Priority Research Program of the Chinese Academy of Sciences
                Award ID: XDA13020500
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                biotechnology, cell biology, developmental biology, plant sciences

                Comments

                Comment on this article