44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence.

          Methods

          We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets.

          Results

          The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer.

          Conclusions

          These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.

          Panitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials. KRAS mutations were detected using polymerase chain reaction on DNA from tumor sections collected in a phase III mCRC trial comparing panitumumab monotherapy to best supportive care (BSC). We tested whether the effect of panitumumab on progression-free survival (PFS) differed by KRAS status. KRAS status was ascertained in 427 (92%) of 463 patients (208 panitumumab, 219 BSC). KRAS mutations were found in 43% of patients. The treatment effect on PFS in the wild-type (WT) KRAS group (hazard ratio [HR], 0.45; 95% CI: 0.34 to 0.59) was significantly greater (P < .0001) than in the mutant group (HR, 0.99; 95% CI, 0.73 to 1.36). Median PFS in the WT KRAS group was 12.3 weeks for panitumumab and 7.3 weeks for BSC. Response rates to panitumumab were 17% and 0%, for the WT and mutant groups, respectively. WT KRAS patients had longer overall survival (HR, 0.67; 95% CI, 0.55 to 0.82; treatment arms combined). Consistent with longer exposure, more grade III treatment-related toxicities occurred in the WT KRAS group. No significant differences in toxicity were observed between the WT KRAS group and the overall population. Panitumumab monotherapy efficacy in mCRC is confined to patients with WT KRAS tumors. KRAS status should be considered in selecting patients with mCRC as candidates for panitumumab monotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oncogenic pathway signatures in human cancers as a guide to targeted therapies.

            The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-throughput oncogene mutation profiling in human cancer.

              Systematic efforts are underway to decipher the genetic changes associated with tumor initiation and progression. However, widespread clinical application of this information is hampered by an inability to identify critical genetic events across the spectrum of human tumors with adequate sensitivity and scalability. Here, we have adapted high-throughput genotyping to query 238 known oncogene mutations across 1,000 human tumor samples. This approach established robust mutation distributions spanning 17 cancer types. Of 17 oncogenes analyzed, we found 14 to be mutated at least once, and 298 (30%) samples carried at least one mutation. Moreover, we identified previously unrecognized oncogene mutations in several tumor types and observed an unexpectedly high number of co-occurring mutations. These results offer a new dimension in tumor genetics, where mutations involving multiple cancer genes may be interrogated simultaneously and in 'real time' to guide cancer classification and rational therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                BMC Med Genomics
                BMC Medical Genomics
                BioMed Central
                1755-8794
                2010
                30 June 2010
                : 3
                : 26
                Affiliations
                [1 ]Department of Molecular Profiling and Research Informatics, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
                [2 ]Rosetta Inpharmatics LLC, a wholly-owned subsidiary of Merck & Co., Inc, Seattle, Washington 98109, USA
                [3 ]Oncology basic research, Merck Research Laboratories, 33 Avenue Louis Pasteur Boston, MA, USA 02115
                [4 ]Oncology, Merck Research Laboratories, North Wales, Pennsylvania, 19454, USA
                Article
                1755-8794-3-26
                10.1186/1755-8794-3-26
                2911390
                20591134
                e2e5e2e5-1f59-4a75-9471-e936d4d90ea6
                Copyright ©2010 Loboda et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 April 2010
                : 30 June 2010
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article