9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anatomic relationships between aromatase and androgen receptor mRNA expression in the hypothalamus and amygdala of adult male cynomolgus monkeys

      , ,
      The Journal of Comparative Neurology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study.

          The distribution of cells that express mRNA encoding the androgen (AR) and estrogen (ER) receptors was examined in adult male and female rats by using in situ hybridization. Specific labeling appeared to be largely, if not entirely, localized to neurons. AR and ER mRNA-containing neurons were widely distributed in the rat brain, with the greatest densities of cells in the hypothalamus, and in regions of the telencephalon that provide strong inputs in the medial preoptic and ventromedial nuclei, each of which is thought to play a key role in mediating the hormonal control of copulatory behavior, as well as in the lateral septal nucleus, the medial and cortical nuclei of the amygdala, the amygdalohippocampal area, and the bed nucleus of the stria terminalis. Heavily labeled ER mRNA-containing cells were found in regions known to be involved in the neural control of gonadotropin release, such as the anteroventral periventricular and the arcuate nuclei, but only a moderate density of labeling for AR mRNA was found over these nuclei. In addition, clearly labeled cells were found in regions with widespread connections throughout the brain, including the lateral hypothalamus, intralaminar thalamic nuclei, and deep layers of the cerebral cortex, suggesting that AR and ER may modulate a wide variety of neural functions. Each part of Ammon's horn contained AR mRNA-containing cells, as did both parts of the subiculum, but ER mRNA appeared to be less abundant in the hippocampal formation. Moreover, AR and ER mRNA-containing cells were also found in olfactory regions of the cortex and in both the main and accessory olfactory bulbs. AR and ER may modulate nonolfactory sensory information as well since labeled cells were found in regions involved in the central relay of somatosensory information, including the mesencephalic nucleus of the trigeminal nerve, the ventral thalamic nuclear group, and the dorsal horn of the spinal cord. Furthermore, heavily labeled AR mRNA-containing cells were found in the vestibular nuclei, the cochlear nuclei, the medial geniculate nucleus, and the nucleus of the lateral lemniscus, which suggests that androgens may alter the central relay of vestibular and auditory information as well. However, of all the regions involved in sensory processing, the heaviest labeling for AR and ER mRNA was found in areas that relay visceral sensory information such as the nucleus of the solitary tract, the area postrema, and the subfornical organ. We did not detect ER mRNA in brainstem somatic motoneurons, but clearly labeled AR mRNA-containing cells were found in motor nuclei associated with the fifth, seventh, tenth, and twelfth cranial nerves. Similarly, spinal motoneurons contained AR but not ER mRNA.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effect of testosterone and estradiol in a man with aromatase deficiency.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human behavioral sex differences: a role for gonadal hormones during early development?

              Evidence that gonadal hormones during prenatal and neonatal development influence behavior is reviewed. Several theoretical models of hormonal influences, derived from research in other species, are described. These models are evaluated on the basis of data from humans with either normal or abnormal hormonal exposure. It is concluded that the evidence is insufficient to determine which model best explains the data. Sexual differentiation may involve several dimensions, and different models may apply to different behaviors. Gonadal hormones appear to influence development of some human behaviors that show sex differences. The evidence is strongest for childhood play behavior and is relatively strong for sexual orientation and tendencies toward aggression. Also, high levels of hormones do not enhance intelligence, although a minimum level may be needed for optimal development of some cognitive processes. Directions for future research are proposed.
                Bookmark

                Author and article information

                Journal
                The Journal of Comparative Neurology
                J. Comp. Neurol.
                Wiley
                0021-9967
                1096-9861
                October 15 2001
                October 15 2001
                : 439
                : 2
                : 208-223
                Article
                10.1002/cne.1343
                e2e6711a-c143-4d15-bbd7-bc53a4987480
                © 2001

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article