1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome profiling reveals Th2 bias and identifies endogenous itch mediators in poison ivy contact dermatitis

      research-article
      1 , 2 , 1 , 3 , 1 , 3 ,
      JCI Insight
      American Society for Clinical Investigation
      Immunology, Neuroscience, Cytokines, Pharmacology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the United States, poison ivy is the most common naturally occurring allergen that causes allergic contact dermatitis (ACD). The immune and pruritic mechanisms associated with poison ivy ACD remain largely unexplored. Here, we compared skin whole transcriptomes and itch mediator levels in mouse ACD models induced by the poison ivy allergen, urushiol, and the synthetic allergen, oxazolone. The urushiol model produced a Th2-biased immune response and scratching behavior, resembling findings in poison ivy ACD patients. Urushiol-challenged skin contained elevated levels of the cytokine thymic stromal lymphopoietin (TSLP), a T cell regulator and itch mediator, and pruritogenic serotonin (5-HT) and endothelin (ET-1) but not substance P (SP) or histamine. The oxazolone model generated a mixed Th1/Th2 response associated with increased levels of SP, 5-HT, and ET-1 but not TSLP or histamine. Injections of a TSLP monoclonal neutralizing antibody or serotonergic or endothelin inhibitors, but not SP inhibitors or antihistamines, reduced scratching behaviors in urushiol-challenged mice. Our findings suggest that the mouse urushiol model may serve as a translational model of human poison ivy ACD. Inhibiting signaling by TSLP and other cytokines may represent alternatives to the standard steroid/antihistamine regimen for steroid-resistant or -intolerant patients and in exaggerated systemic responses to poison ivy.

          Abstract

          Characterization of the immune and pruritic pathways in a mouse model of poison ivy-induced allergic contact dermatitis.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy.

          T-helper (Th) cells play a central role in modulating immune responses. The Th1/Th2 paradigm has now developed into the new Th1/Th2/Th17 paradigm. In addition to effector cells, Th cells are regulated by regulatory T (Treg) cells. Their capacity to produce cytokines is suppressed by immunoregulatory cytokines such as transforming growth factor (TGF)-beta and interleukin (IL)-10 or by cell-to-cell interaction. Here, we will review the immunological environment in normal pregnancy and complicated pregnancy, such as implantation failure, abortion, preterm labor, and preeclampsia from the viewpoint of the new Th1/Th2/Th17 and Treg paradigms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch.

            Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the "atopic march." Signaling between epithelial cells and innate immune cells via the cytokine thymic stromal lymphopoietin (TSLP) is thought to drive AD and the atopic march. Here, we report that epithelial cells directly communicate to cutaneous sensory neurons via TSLP to promote itch. We identify the ORAI1/NFAT calcium signaling pathway as an essential regulator of TSLP release from keratinocytes, the primary epithelial cells of the skin. TSLP then acts directly on a subset of TRPA1-positive sensory neurons to trigger robust itch behaviors. Our results support a model whereby calcium-dependent TSLP release by keratinocytes activates both primary afferent neurons and immune cells to promote inflammatory responses in the skin and airways. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis.

              Atopic dermatitis (AD) is classified as extrinsic and intrinsic, representing approximately 80% and 20% of patients with the disease, respectively. Although sharing a similar clinical phenotype, only extrinsic AD is characterized by high serum IgE levels. Because most patients with AD exhibit high IgE levels, an "allergic"/IgE-mediated disease pathogenesis was hypothesized. However, current models associate AD with T-cell activation, particularly TH2/TH22 polarization, and epidermal barrier defects. We sought to define whether both variants share a common pathogenesis. We stratified 51 patients with severe AD into extrinsic AD (n = 42) and intrinsic AD (n = 9) groups (with similar mean disease activity/SCORAD scores) and analyzed the molecular and cellular skin pathology of lesional and nonlesional intrinsic AD and extrinsic AD by using gene expression (real-time PCR) and immunohistochemistry. A significant correlation between IgE levels and SCORAD scores (r = 0.76, P < 10(-5)) was found only in patients with extrinsic AD. Marked infiltrates of T cells and dendritic cells and corresponding epidermal alterations (keratin 16, Mki67, and S100A7/A8/A9) defined lesional skin of patients with both variants. However, higher activation of all inflammatory axes (including TH2) was detected in patients with intrinsic AD, particularly TH17 and TH22 cytokines. Positive correlations between TH17-related molecules and SCORAD scores were only found in patients with intrinsic AD, whereas only patients with extrinsic AD showed positive correlations between SCORAD scores and TH2 cytokine (IL-4 and IL-5) levels and negative correlations with differentiation products (loricrin and periplakin). Although differences in TH17 and TH22 activation exist between patients with intrinsic AD and those with extrinsic AD, we identified common disease-defining features of T-cell activation, production of polarized cytokines, and keratinocyte responses to immune products. Our data indicate that a TH2 bias is not the sole cause of high IgE levels in patients with extrinsic AD, with important implications for similar therapeutic interventions. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                JCI Insight
                JCI Insight
                JCI Insight
                JCI Insight
                American Society for Clinical Investigation
                2379-3708
                25 July 2019
                25 July 2019
                25 July 2019
                : 4
                : 14
                : e124497
                Affiliations
                [1 ]Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
                [2 ]Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
                [3 ]Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA.
                Author notes
                Address correspondence to: Sven-Eric Jordt, Department of Anesthesiology, Duke University School of Medicine, 905 S. LaSalle St., Box 3094 MS27, Durham, North Carolina 27710, USA. Phone: 919.684.1327; Email: sven.jordt@ 123456duke.edu . Or to: Boyi Liu, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou 310053, China. Phone: 86.57186613588; Email: boyi.liu@ 123456foxmail.com .

                Authorship note: Boyi Liu, Boyu Liu, and YT contributed equally to this work.

                Author information
                http://orcid.org/0000-0001-5655-6292
                http://orcid.org/0000-0001-6171-5622
                Article
                124497
                10.1172/jci.insight.124497
                6675552
                31184997
                e2ecfaad-dad6-47c8-903f-427c90f31c9c
                © 2019 Liu et al.

                This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 August 2018
                : 5 June 2019
                Funding
                Funded by: Zhejiang Natural Science Foundation
                Award ID: LR17H270001
                Funded by: National Science Foundation of China
                Award ID: 81603676
                Funded by: National Institute of Arthritis and Musculoskeletal and Skin Diseases of National Institutes of Health
                Award ID: R21AR070554
                Categories
                Research Article

                immunology,neuroscience,cytokines,pharmacology
                immunology, neuroscience, cytokines, pharmacology

                Comments

                Comment on this article