25
views
0
recommends
+1 Recommend
1 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Covering Reused Broiler Litter with Plastic Canvas on Litter Characteristics and Bacteriology and the Subsequent Immunity and Microbiology of Broilers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT In broiler production, the litter is reused for consecutives flocks, and it is treated during down time between flocks to reduce its microbial load. Although covering the litter with a plastic canvas is a common litter treatment in the field, there is little scientific information available on its efficacy. The aim of this study was to evaluate the effects of covering broiler litter with a plastic canvas for eight days on litter microbiological, physical, and chemical parameters, and on the intestinal microbiota and immunity of broilers. In the first trial, reused litter from a previous flock was distributed into three treatments, with six replicates each: L1 (negative control, litter free from Salmonella Enteritidis (SE) and Eimeria maxima (EM) and not covered), L2 (positive control, litter with SE and EM, and not covered), and L3 (litter with SE and EM, and covered with plastic canvas for eight days). Litter total bacteria, Enterobacteria, Lactobacillus, SE, and EM counts, and litter pH, temperature, moisture, and ammonia emission were determined on days 1 and 8. In the second trial, broilers were housed on those litters according to the treatments described above, and their intestinal microbiota, gut CD4+ and CD8+ lymphocytes and macrophages, and liver and intestinal pro-inflammatory interleukin (IFN-γ, IL-1β e IL-18) levels were evaluated on days 14 and 28. A significant reduction of litter bacterial populations was observed in the litter covered with plastic canvas. A significantly higher mRNA IFN-γ gene expression (12.5-fold) was observed in the jejunum and liver of broilers reared on the litter with Enterobacteria counts. No EM reduction was observed in the covered litter. Covering reused broiler litter with plastic canvas reduces initial litter bacterial load as a result of the interaction between physical and chemical parameters.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Role of the Bacterial Flagellum in Adhesion and Virulence

          The bacterial flagellum is a complex apparatus assembled of more than 20 different proteins. The flagellar basal body traverses the cell wall, whereas the curved hook connects the basal body to the whip-like flagellar filament that protrudes several µm from the bacterial cell. The flagellum has traditionally been regarded only as a motility organelle, but more recently it has become evident that flagella have a number of other biological functions. The major subunit, flagellin or FliC, of the flagellum plays a well-documented role in innate immunity and as a dominant antigen of the adaptive immune response. Importantly, flagella have also been reported to function as adhesins. Whole flagella have been indicated as significant in bacterial adhesion to and invasion into host cells. In various pathogens, e.g., Escherichia coli, Pseudomonas aeruginosa and Clostridium difficile, flagellin and/or the distally located flagellar cap protein have been reported to function as adhesins. Recently, FliC of Shiga-toxigenic E. coli was shown to be involved in cellular invasion via lipid rafts. Here, we examine the latest or most important findings regarding flagellar adhesive and invasive properties, especially focusing on the flagellum as a potential virulence factor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis of TLR5-flagellin recognition and signaling.

            Toll-like receptor 5 (TLR5) binding to bacterial flagellin activates signaling through the transcription factor NF-κB and triggers an innate immune response to the invading pathogen. To elucidate the structural basis and mechanistic implications of TLR5-flagellin recognition, we determined the crystal structure of zebrafish TLR5 (as a variable lymphocyte receptor hybrid protein) in complex with the D1/D2/D3 fragment of Salmonella flagellin, FliC, at 2.47 angstrom resolution. TLR5 interacts primarily with the three helices of the FliC D1 domain using its lateral side. Two TLR5-FliC 1:1 heterodimers assemble into a 2:2 tail-to-tail signaling complex that is stabilized by quaternary contacts of the FliC D1 domain with the convex surface of the opposing TLR5. The proposed signaling mechanism is supported by structure-guided mutagenesis and deletion analyses on CBLB502, a therapeutic protein derived from FliC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections.

              The expression levels of mRNA encoding a panel of 28 chicken cytokines and chemokines were quantified in intestinal lymphocytes following Eimeria acervulina and Eimeria tenella primary and secondary infections. Compared with uninfected controls, transcripts of the pro-inflammatory cytokines IFN-alpha, IL-1beta, IL-6, and IL-17 were increased up to 2020-fold following primary infection. By contrast, following secondary infection by either microorganism, pro-inflammatory mRNAs levels were relatively unchanged (< or = 20-fold). Transcripts encoding the Th1 and Th1 regulatory cytokines IFN-gamma, IL-2, IL-10, IL-12, IL-15, IL-16, and IL-18 were uniformly increased 14-2471-fold after E. acervulina primary infection, but either unchanged (IL-15, IL-16, IL-18), increased (IFN-gamma, IL-10, IL-12), or decreased (IL-2) following E. tenella primary infection. Following secondary infections, Th1 cytokine mRNA levels were relatively unchanged, with the exception of IL-12 which was increased 1.5 x 10(5)-fold after E. acervulina and decreased 5.1 x 10(4)-fold after E. tenella infection. Transcripts for the Th2 or Th2 regulatory cytokines IL-3 and GM-CSF were increased up to 327-fold following primary or secondary infection with both parasites, while IL-4 and IL-13 mRNAs were decreased 25- to 2 x 10(5)-fold after primary or secondary infection. The dynamics of chicken chemokine expression revealed modest changes (<100-fold) following primary or secondary infection except for lymphotactin. When lymphocyte subpopulations were similarly analyzed, IFN-gamma, IL-2, IL-3, IL-15, and MIF were most highly increased in TCR2(+) cells following E. acervulina infection, while TCR1(+) cells only expressed high levels of IL-16 following E. tenella infection. In contrast, CD4(+) cells only expressed highest levels of IL-10 after E. acervulina infection, whereas these cells produced abundant transcripts for IFN-gamma, IL-3, IL-15, and MIF after E. tenella infection. We conclude that coccidiosis induces a diverse and robust primary cytokine/chemokine response, but a more subdued secondary response.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                rbca
                Revista Brasileira de Ciência Avícola
                Rev. Bras. Cienc. Avic.
                Fundação APINCO de Ciência e Tecnologia Avícolas (Campinas, SP, Brazil )
                1516-635X
                1806-9061
                December 2016
                : 18
                : 4
                : 563-572
                Affiliations
                [2] Paraná orgnameUniversidade Federal do Paraná orgdiv1Department of Veterinary Medicine orgdiv2Laboratory of Microbiology and Avian Pathology Brazil
                [3] orgnameJBS foods Brazil Brazil
                [1] Paraná orgnameUniversidade Federal do Paraná orgdiv1Department of Biochemistry and Molecular Biology, Brazil dmesaf@ 123456unal.edu.co
                Article
                S1516-635X2016000400563
                10.1590/1806-9061-2015-0061
                e2f28366-ccaa-4745-a980-39778c83b35a

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : April 2015
                : February 2016
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 61, Pages: 10
                Product

                SciELO Brazil


                Ammonia,cytokines,Lactobacillus,macrophages,Salmonella
                Ammonia, cytokines, Lactobacillus, macrophages, Salmonella

                Comments

                Comment on this article