Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Kidney Development: An Overview

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Kidney diseases are worldwide public health problems with a high cost and increasing incidence. By revealing the genetic and cellular mechanism behind mammalian kidney development, better diagnostic methods and novel therapies can be expected to be developed. The mammalian kidney is a typical organ that develops on the basis of sequential and reciprocal cell and tissue interactions. Functional genetic analysis has identified that genes from different classes are involved in the construction of the kidney and the same genes are also connected to the development of diseases. Summary: This review gives an overview of the basics of kidney ontogeny, from identification of the primary kidney cell to inductive signals of ureter budding and formation of the segmented nephron. We also go through some of the key factors involved in the control of morphogenesis. Key Message: Despite the wealth of accumulated data on nephron development, including progenitor cell control factors and inductive signals, many of the detailed mechanisms remain to be revealed.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development.

          Nephrons, the basic functional units of the kidney, are generated repetitively during kidney organogenesis from a mesenchymal progenitor population. Which cells within this pool give rise to nephrons and how multiple nephron lineages form during this protracted developmental process are unclear. We demonstrate that the Six2-expressing cap mesenchyme represents a multipotent nephron progenitor population. Six2-expressing cells give rise to all cell types of the main body of the nephron during all stages of nephrogenesis. Pulse labeling of Six2-expressing nephron progenitors at the onset of kidney development suggests that the Six2-expressing population is maintained by self-renewal. Clonal analysis indicates that at least some Six2-expressing cells are multipotent, contributing to multiple domains of the nephron. Furthermore, Six2 functions cell autonomously to maintain a progenitor cell status, as cap mesenchyme cells lacking Six2 activity contribute to ectopic nephron tubules, a mechanism dependent on a Wnt9b inductive signal. Taken together, our observations suggest that Six2 activity cell-autonomously regulates a multipotent nephron progenitor population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4.

            The kidney has been widely exploited as a model system for the study of tissue inductions regulating vertebrate organogenesis. Kidney development is initiated by the ingrowth of the Wolfian duct-derived ureteric bud into the presumptive kidney mesenchyme. In response to a signal from the ureter, mesenchymal cells condense, aggregate into pretubular clusters and undergo an epithelial conversion generating a simple tubule. This then undergoes morphogenesis and is transformed into the excretory system of the kidney, the nephron. We report here that the expression of Wnt-4, which encodes a secreted glycoprotein, correlates with, and is required for, kidney tubulogenesis. Mice lacking Wnt-4 activity fail to form pretubular cell aggregates; however, other aspects of mesenchymal and ureteric development are unaffected. Thus, Wnt-4 appears to act as an autoinducer of the mesenchyme to epithelial transition that underlies nephron development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glomerular number and size in autopsy kidneys: the relationship to birth weight.

              In the Southeast United States, African Americans have an estimated incidence of hypertension and end-stage renal disease (ESRD) that is five times greater than Caucasians. Higher rates of low birth weight (LBW) among African Americans is suggested to predispose African Americans to the higher risk, possibly by reducing the number of glomeruli that develop in the kidney. This study investigates the relationships between age, race, gender, total glomerular number (Nglom), mean glomerular volume (Vglom), body surface area (BSA), and birth weight. Stereologic estimates of Nglom and Vglom were obtained using the physical disector/fractionator combination for autopsy kidneys from 37 African Americans and 19 Caucasians. Nglom was normally distributed and ranged from 227,327 to 1,825,380, an 8.0-fold difference. A direct linear relationship was observed between Nglom and birth weight (r = 0.423, P = 0.0012) with a regression coefficient that predicted an increase of 257,426 glomeruli per kilogram increase in birth weight (alpha = 0.050:0.908). Among adults there was a 4.9-fold range in Vglom, and in adults, Vglom was strongly and inversely correlated with Nglom (r =-0.640, P = 0.000002). Adult Vglom showed no significant correlation with BSA for males (r = -0.0150, P = 0.936), although it did for females (r = 0.606, P = 0.022). No racial differences in average Nglom or Vglom were observed. Birth weight is a strong determinant of Nglom and thereby of glomerular size in the postnatal kidney. The findings support the hypothesis that LBW by impairing nephron development is a risk factor for hypertension and ESRD in adulthood.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                978-3-318-02677-1
                978-3-318-02678-8
                1660-2129
                2014
                May 2014
                19 May 2014
                : 126
                : 2
                : 40-44
                Affiliations
                Oulu Center for Cell-Matrix Research, Biocenter and Infotech Oulu, Laboratory of Developmental Biology, Intelligent Systems, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
                Author notes
                *Prof. Seppo Vainio, Biocenter Oulu, Laboratory of Developmental Biology, University of Oulu, Aapistie 5, PO Box 5000, FI-90220 Oulu (Finland), E-Mail seppo.vainio@oulu.fi
                Article
                360659 Nephron Exp Nephrol 2014;126:40-44
                10.1159/000360659
                24854638
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, Pages: 5
                Categories
                Further Section

                Comments

                Comment on this article