95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Histone Deacetylase 8 Is Required for Centrosome Cohesion and Influenza A Virus Entry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza A virus (IAV) enters host cells by endocytosis followed by acid-activated penetration from late endosomes (LEs). Using siRNA silencing, we found that histone deacetylase 8 (HDAC8), a cytoplasmic enzyme, efficiently promoted productive entry of IAV into tissue culture cells, whereas HDAC1 suppressed it. HDAC8 enhanced endocytosis, acidification, and penetration of the incoming virus. In contrast, HDAC1 inhibited acidification and penetration. The effects were connected with dramatic alterations in the organization of the microtubule system, and, as a consequence, a change in the behavior of LEs and lysosomes (LYs). Depletion of HDAC8 caused loss of centrosome-associated microtubules and loss of directed centripetal movement of LEs, dispersing LE/LYs to the cell periphery. For HDAC1, the picture was the opposite. To explain these changes, centrosome cohesion emerged as the critical factor. Depletion of HDAC8 caused centrosome splitting, which could also be induced by depleting a centriole-linker protein, rootletin. In both cases, IAV infection was inhibited. HDAC1 depletion reduced the splitting of centrosomes, and enhanced infection. The longer the distance between centrosomes, the lower the level of infection. HDAC8 depletion was also found to inhibit infection of Uukuniemi virus (a bunyavirus) suggesting common requirements among late penetrating enveloped viruses. The results established class I HDACs as powerful regulators of microtubule organization, centrosome function, endosome maturation, and infection by IAV and other late penetrating viruses.

          Author Summary

          Histone deacetylases (HDACs) are generally associated with the epigenetic regulation of gene expression in the nucleus, but some have been shown to possess cytoplasmic functions. While analyzing the role of cell factors in influenza A virus entry into host cells, we observed that depletion of members of the class I HDAC family dramatically affected the efficiency of infection. Depletion of HDACs 8 and 3 decreased, and depletion of HDAC1 elevated the efficiency of entry. For HDAC1 and 8, this could be traced back to opposing effects on the architecture of centrosomes and consequences on microtubule organization. HDAC8 depletion caused the centrosomes to split and move away from each other. The microtubules were disorganized, and endosomes failed to move to the perinuclear region of the cell. Endocytosed viruses did not penetrate because the endosomes dispersed throughout the cytoplasm and did not acidify properly. In contrast, when HDAC1 was depleted, fewer centrosomes were split, and endosome transport and acidification became more efficient. Taken together, our results showed for the first time that class I HDACs play a role in the organization of the microtubule network, in endosome maturation, and in the entry of influenza and other late penetrating viruses into host cells.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

          Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinesin superfamily motor proteins and intracellular transport.

            Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feature point tracking and trajectory analysis for video imaging in cell biology.

              This paper presents a computationally efficient, two-dimensional, feature point tracking algorithm for the automated detection and quantitative analysis of particle trajectories as recorded by video imaging in cell biology. The tracking process requires no a priori mathematical modeling of the motion, it is self-initializing, it discriminates spurious detections, and it can handle temporary occlusion as well as particle appearance and disappearance from the image region. The efficiency of the algorithm is validated on synthetic video data where it is compared to existing methods and its accuracy and precision are assessed for a wide range of signal-to-noise ratios. The algorithm is well suited for video imaging in cell biology relying on low-intensity fluorescence microscopy. Its applicability is demonstrated in three case studies involving transport of low-density lipoproteins in endosomes, motion of fluorescently labeled Adenovirus-2 particles along microtubules, and tracking of quantum dots on the plasma membrane of live cells. The present automated tracking process enables the quantification of dispersive processes in cell biology using techniques such as moment scaling spectra.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2011
                October 2011
                27 October 2011
                : 7
                : 10
                : e1002316
                Affiliations
                [1 ]Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
                [2 ]Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
                [3 ]Light Microscopy Center, Department of Biology, ETH Zurich, Zurich, Switzerland
                Johns Hopkins University - Bloomberg School of Public Health, United States of America
                Author notes

                Conceived and designed the experiments: YY AH. Performed the experiments: YY HB. Analyzed the data: YY HB IFS PH. Contributed reagents/materials/analysis tools: IB IFS PH. Wrote the paper: YY AH.

                Article
                PPATHOGENS-D-11-01251
                10.1371/journal.ppat.1002316
                3203190
                22046129
                e30e4753-4c3e-48b7-806e-93556fa427c1
                Yamauchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 June 2011
                : 1 September 2011
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Medicine
                Infectious Diseases
                Viral Diseases
                Influenza

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article