12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of a cyclooxygenase gene from the red alga Gracilaria vermiculophylla and bioconversion of arachidonic acid to PGF(2α) in engineered Escherichia coli.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostaglandins (PGs) are important local messenger molecules in many tissues and organs of animals including human. For applications in medicine and animal care, PGs are mostly purified from animal tissues or chemically synthesized. To generate a clean, reliable, and inexpensive source for PGs, we have now engineered expression of a suitable cyclooxygenase gene in Escherichia coli and achieved production levels of up to 2.7 mg l(-1) PGF(2α). The cyclooxygenase gene cloned from the red alga Gracilaria vermiculophylla appears to be fully functional without any eukaryotic modifications in E. coli. A crude extract of the recombinant E. coli cells is able to convert in vitro the substrate arachidonic acid (AA) to PGF(2α). Furthermore, these E. coli cells produced PGF(2α) in a medium supplemented with AA and secreted the PGF(2α) product. To our knowledge, this is the first report of the functional expression of a cyclooxygenase gene and concomitant production of PGF(2α) in E. coli. The successful microbial synthesis of PGs with reliable yields promises a novel pharmaceutical tool to produce PGF(2α) at significantly reduced prices and greater purity.

          Related collections

          Author and article information

          Journal
          Appl. Microbiol. Biotechnol.
          Applied microbiology and biotechnology
          Springer Nature America, Inc
          1432-0614
          0175-7598
          Aug 2011
          : 91
          : 4
          Affiliations
          [1 ] Laboratory of Plant Gene Technology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-machi, Ishikawa 921-8836, Japan.
          Article
          10.1007/s00253-011-3349-5
          21637939
          e333c020-e3fb-4af2-acdb-87882a97a26c
          History

          Comments

          Comment on this article