Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Liver stiffness: a novel parameter for the diagnosis of liver disease

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The noninvasive quantitation of liver stiffness (LS) by ultrasound based transient elastography using FibroScan® has revolutionized the diagnosis of liver diseases, namely liver cirrhosis. Alternative techniques such as acoustic radiation impulse frequency imaging or magnetic resonance elastography are currently under investigation. LS is an excellent surrogate marker of advanced fibrosis (F3) and cirrhosis (F4) outscoring all previous noninvasive approaches to detect cirrhosis. LS values below 6 kPa are considered as normal and exclude ongoing liver disease. LS of 8 and 12.5 kPa represent generally accepted cut-off values for F3 and F4 fibrosis. LS highly correlates with portal pressure, and esophageal varices are likely at values >20 kPa. Many other factors may also increase LS such as hepatic infiltration with tumor cells, mast cells (mastocytosis), inflammatory cells (all forms of hepatitis) or amyloidosis. In addition, LS is directly correlated with the venous pressure (eg, during liver congestion) and is increased during mechanic cholestasis. Thus, LS should always be interpreted in the context of clinical, imaging and laboratory findings. Finally, LS has helped to better understand the molecular mechanisms underlying liver fibrosis. The novel pressure-stiffness-fibrosis sequence hypothesis is introduced.

          Related collections

          Most cited references 109

          • Record: found
          • Abstract: found
          • Article: not found

          Liver fibrosis.

          Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transient elastography: a new noninvasive method for assessment of hepatic fibrosis.

            Chronic hepatitis is accompanied by progressive deposit of hepatic fibrosis, which may lead to cirrhosis. Evaluation of liver fibrosis is, thus, of great clinical interest and, up to now, has been assessed with liver biopsy. This work aims to evaluate a new noninvasive device to quantify liver fibrosis: the shear elasticity probe or fibroscan. This device is based on one-dimensional (1-D) transient elastography, a technique that uses both ultrasound (US) (5 MHz) and low-frequency (50 Hz) elastic waves, whose propagation velocity is directly related to elasticity. The intra- and interoperator reproducibility of the technique, as well as its ability to quantify liver fibrosis, were evaluated in 106 patients with chronic hepatitis C. Liver elasticity measurements were reproducible (standardized coefficient of variation: 3%), operator-independent and well correlated (partial correlation coefficient = 0.71, p /= F2) and with cirrhosis ( = F4), respectively. The Fibroscan is a noninvasive, painless, rapid and objective method to quantify liver fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liver cirrhosis.

              Cirrhosis is defined as the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury, which leads to portal hypertension and end-stage liver disease. Recent advances in the understanding of the natural history and pathophysiology of cirrhosis, and in treatment of its complications, have resulted in improved management, quality of life, and life expectancy of patients. Liver transplantation remains the only curative option for a selected group of patients, but pharmacological treatments that can halt progression to decompensated cirrhosis or even reverse cirrhosis are currently being developed. This Seminar focuses on the diagnosis, complications, and management of cirrhosis, and new clinical and scientific developments.
                Bookmark

                Author and article information

                Journal
                Hepat Med
                Hepat Med
                Hepatic Medicine: Evidence and Research
                Hepatic Medicine : Evidence and Research
                Dove Medical Press
                1179-1535
                2010
                25 May 2010
                : 2
                : 49-67
                Affiliations
                [1 ]Department of Medicine and Center for Alcohol Research, Liver Disease and Nutrition, Salem Medical Center, University of Heidelberg, Heidelberg, Germany
                [2 ]Echosens, Department of Research and Development, Paris, France
                Author notes
                Correspondence: Sebastian Mueller, Department of Internal Medicine, Salem Medical Center, University of Heidelberg, Zeppelinstraße 11-33, 69121 Heidelberg, Germany, Tel +49 6221 483210, Fax +49 6221 484494, Email sebastian.mueller@ 123456urz.uni-heidelberg.de
                Article
                hmer-2-049
                3846375
                24367208
                © 2010 Mueller and Sandrin, publisher and licensee Dove Medical Press Ltd

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                Categories
                Review

                Comments

                Comment on this article