+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found

      So close and yet so far — Molecular microbiology of Campylobacter fetus subspecies

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Campylobacter fetus comprises two subspecies, C. fetus subsp. fetus and C. fetus subsp. venerealis, which are considered emerging pathogens in humans and animals. Comparisons at the genome level have revealed modest subspecies-specific variation; nevertheless, these two subspecies show distinct host and niche preferences. C. fetus subsp. fetus is a commensal and pathogen of domesticated animals that can be transmitted to humans via contaminated food. The clinical features of human infection can be severe, especially in impaired hosts. In contrast, C. fetus subsp. venerealis is a sexually transmitted pathogen essentially restricted to cattle. Infections leading to bovine venereal campylobacteriosis cause substantial economic losses due to abortion and infertility. Recent genome sequencing of the two subspecies has advanced our understanding of C. fetus adaptations through comparative genomics and the identification of subspecies-specific gene regions predicted to be involved in pathogenesis. The most striking difference between the subspecies is the highly subspecies-specific association of a pathogenicity island in the C. fetus subsp. venerealis chromosome. The inserted region encodes a Type 4 secretion system, which contributes to virulence properties of this organism in vitro. This review describes the main differences in epidemiological, phenotypic, and molecular characteristics of the two subspecies and summarizes recent advances towards understanding the molecular mechanisms of C. fetus pathogenesis.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Biological diversity of prokaryotic type IV secretion systems.

          Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
            • Record: found
            • Abstract: found
            • Article: not found

            Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors.

            Specialized secretion systems are used by many bacteria to deliver effector proteins into host cells that can either mimic or disrupt the function of eukaryotic factors. We found that the intracellular pathogens Legionella pneumophila and Coxiella burnetii use a type IV secretion system to deliver into eukaryotic cells a large number of different bacterial proteins containing ankyrin repeat homology domains called Anks. The L. pneumophila AnkX protein prevented microtubule-dependent vesicular transport to interfere with fusion of the L. pneumophila-containing vacuole with late endosomes after infection of macrophages, which demonstrates that Ank proteins have effector functions important for bacterial infection of eukaryotic host cells.
              • Record: found
              • Abstract: found
              • Article: not found

              The clinical importance of emerging Campylobacter species.

              A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.

                Author and article information

                European Journal of Microbiology and Immunology
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                1 March 2012
                : 2
                : 1
                : 66-75
                [ 1 ] Institute of Pathology, Medical University of Graz, Graz, Austria
                [ 2 ] Institute of Molecular Biosciences, University of Graz, Graz, Austria
                [ 3 ] Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/I, A-8010, Graz, Austria
                [ 4 ] Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036, Graz, Austria
                Author notes
                [* ] +43 316 380 5624, +43 316 380 9019, ellen.zechner@ 123456uni-graz.at
                [** ] +43 316 385 83649, +43 316 385 3432, gregor.gorkiewicz@ 123456medunigraz.at

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                pathogenicity,comparative genomics,human/animal pathogens, Campylobacter fetus subspecies


                Comment on this article