14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined use of EpCAM and FRα enables the high-efficiency capture of circulating tumor cells in non-small cell lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circulating tumor cells (CTCs) provide a new approach for auxiliary diagnosis, therapeutic effect evaluation, and prognosis prediction for cancer patients. The epithelial cell adhesion molecule (EpCAM)-based separation method (CellSearch) showed good clinical use in multiple types of cancer. Nevertheless, some non-small cell lung cancer (NSCLC) tumor cells have a lower expression of EpCAM and are less frequently detected by CellSearch. Here, we present a highly sensitive immunomagnetic separation method to capture CTCs based on two cell surface markers for NSCLC, EpCAM and Folate receptor alpha (FRα). Our method has been demonstrated to be more efficient in capturing NSCLC cells (P < 0.01) by enriching three types of CTCs: EpCAM +/FRα −/low, EpCAM −/low/FRα +, and EPCAM +/FRα +. In 41 NSCLC patients, a significantly higher CTC capture rate (48.78% vs. 73.17%) was obtained, and by using a cutoff value of 0 CTC per 2 ml of blood, the sensitivities were 53.66% and 75.61% and the specificities were 100% and 90% for anti-EpCAM-MNs or a combination of anti-EpCAM-MNs and anti-FRα-MNs, respectively. Compared with the tumor-specific LT-PCR based on FRα, our method can isolate intact FRα + CTCs, and it is advantageous for additional CTC-related downstream analysis. Our results provide a new method to increase the CTC capture efficiency of NSCLC.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of mutations in EGFR in circulating lung-cancer cells.

          The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non-small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. We captured highly purified circulating tumor cells from the blood of patients with non-small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerase-chain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. We isolated circulating tumor cells from 27 patients with metastatic non-small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P=0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment. 2008 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            “Sentinel” Circulating Tumor Cells Allow Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease

            Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer. Migration of circulating tumor cells (CTCs) into the blood stream is an early event that occurs during carcinogenesis. We aimed to examine the presence of CTCs in complement to CT-scan in COPD patients without clinically detectable lung cancer as a first step to identify a new marker for early lung cancer diagnosis. The presence of CTCs was examined by an ISET filtration-enrichment technique, for 245 subjects without cancer, including 168 (68.6%) COPD patients, and 77 subjects without COPD (31.4%), including 42 control smokers and 35 non-smoking healthy individuals. CTCs were identified by cytomorphological analysis and characterized by studying their expression of epithelial and mesenchymal markers. COPD patients were monitored annually by low-dose spiral CT. CTCs were detected in 3% of COPD patients (5 out of 168 patients). The annual surveillance of the CTC-positive COPD patients by CT-scan screening detected lung nodules 1 to 4 years after CTC detection, leading to prompt surgical resection and histopathological diagnosis of early-stage lung cancer. Follow-up of the 5 patients by CT-scan and ISET 12 month after surgery showed no tumor recurrence. CTCs detected in COPD patients had a heterogeneous expression of epithelial and mesenchymal markers, which was similar to the corresponding lung tumor phenotype. No CTCs were detected in control smoking and non-smoking healthy individuals. CTCs can be detected in patients with COPD without clinically detectable lung cancer. Monitoring “sentinel” CTC-positive COPD patients may allow early diagnosis of lung cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Folate receptor alpha as a tumor target in epithelial ovarian cancer.

              Folate receptor alpha (FRalpha) is a folate-binding protein overexpressed on ovarian and several other epithelial malignancies that can be used as a target for imaging and therapeutic strategies. The goal of this study is to improve historical data that lack specific information about FRalpha expression in rare histological subtypes, primary disease versus metastatic foci, and recurrent disease. FRalpha expression was analyzed by immunohistochemistry on 186 primary and 27 recurrent ovarian tumors, including 24 pairs of samples obtained from the same individuals at diagnosis and at secondary debulking surgery. For 20 of the 186 primaries, simultaneous metastatic foci were also analyzed. FRalpha staining was analyzed in light of disease morphology, stage, grade, debulking status, and time from diagnosis to recurrence and death. FRalpha expression was apparent in 134 of 186 (72%) primary and 22 of 27 (81.5%) recurrent ovarian tumors. In 21 of 24 (87.5%) matched specimens, recurrent tumors reflected the FRalpha status detected at diagnosis. Metastatic foci were similar to primary tumors in FRalpha staining. FRalpha status was not associated with time to recurrence or overall survival in either univariate or multivariable analyses. FRalpha expression occurs frequently, especially in the common high-grade, high-stage serous tumors that are most likely to recur. New findings from this study show that FRalpha expression is maintained on metastatic foci and recurrent tumors, suggesting that novel folate-targeted therapies may hold promise for the majority of women with either newly diagnosed or recurrent ovarian cancer.
                Bookmark

                Author and article information

                Contributors
                nalirenmin@163.com
                qibinsong@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                19 January 2018
                19 January 2018
                2018
                : 8
                : 1188
                Affiliations
                ISNI 0000 0004 1758 2270, GRID grid.412632.0, Department of Oncology, , Renmin Hospital of Wuhan University, ; Wuhan, 430060 China
                Article
                19391
                10.1038/s41598-018-19391-1
                5775318
                29352248
                e3550a24-a372-4172-ae71-10e494b986de
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 June 2017
                : 28 December 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article