14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Post-finasteride syndrome and post-SSRI sexual dysfunction: two sides of the same coin?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Neurosteroids: endogenous regulators of the GABA(A) receptor.

          GABA(A) (gamma-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs. Certain naturally occurring pregnane steroids can potently and specifically enhance GABA(A) receptor function in a nongenomic (direct) manner, and consequently have anxiolytic, analgesic, anticonvulsant, sedative, hypnotic and anaesthetic properties. These steroids not only act as remote endocrine messengers, but also can be synthesized in the brain, where they modify neuronal activity locally by modulating GABA(A) receptor function. Such 'neurosteroids' can influence mood and behaviour in various physiological and pathophysiological situations, and might contribute to the behavioural effects of psychoactive drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fetal testosterone influences sexually dimorphic gray matter in the human brain.

            In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gonadal steroid induction of structural sex differences in the central nervous system.

                Bookmark

                Author and article information

                Journal
                Endocrine
                Endocrine
                Springer Science and Business Media LLC
                1355-008X
                1559-0100
                August 2018
                April 19 2018
                August 2018
                : 61
                : 2
                : 180-193
                Article
                10.1007/s12020-018-1593-5
                29675596
                e372442f-de37-4403-8055-f8c0047fd322
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article