24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Tripartite Type III Secreton of Shigella flexneri Inserts Ipab and Ipac into Host Membranes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial type III secretion systems serve to translocate proteins into eukaryotic cells, requiring a secreton and a translocator for proteins to pass the bacterial and host membranes. We used the contact hemolytic activity of Shigella flexneri to investigate its putative translocator. Hemolysis was caused by formation of a 25-Å pore within the red blood cell (RBC) membrane. Of the five proteins secreted by Shigella upon activation of its type III secretion system, only the hydrophobic IpaB and IpaC were tightly associated with RBC membranes isolated after hemolysis. Ipa protein secretion and hemolysis were kinetically coupled processes. However, Ipa protein secretion in the immediate vicinity of RBCs was not sufficient to cause hemolysis in the absence of centrifugation. Centrifugation reduced the distance between bacterial and RBC membranes beyond a critical threshold. Electron microscopy analysis indicated that secretons were constitutively assembled at 37°C before any host contact. They were composed of three parts: (a) an external needle, (b) a neck domain, and (c) a large proximal bulb. Secreton morphology did not change upon activation of secretion. In mutants of some genes encoding the secretion machinery the organelle was absent, whereas ipaB and ipaC mutants displayed normal secretons.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Type III protein secretion systems in bacterial pathogens of animals and plants.

          C Hueck (1998)
          Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli, and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells.

            Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce epithelial cell actin rearrangements resulting in pedestal formation beneath adherent bacteria. This requires the secretion of specific virulence proteins needed for signal transduction and intimate adherence. EPEC interaction induces tyrosine phosphorylation of a protein in the host membrane, Hp90, which is the receptor for the EPEC outer membrane protein, intimin. Hp90-intimin interaction is essential for intimate attachment and pedestal formation. Here, we demonstrate that Hp90 is actually a bacterial protein (Tir). Thus, this bacterial pathogen inserts its own receptor into mammalian cell surfaces, to which it then adheres to trigger additional host signaling events and actin nucleation. It is also tyrosine-phosphorylated upon transfer into the host cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type III secretion machines: bacterial devices for protein delivery into host cells.

              Several Gram-negative pathogenic bacteria have evolved a complex protein secretion system termed type III to deliver bacterial effector proteins into host cells that then modulate host cellular functions. These bacterial devices are present in both plant and animal pathogenic bacteria and are evolutionarily related to the flagellar apparatus. Although type III secretion systems are substantially conserved, the effector molecules they deliver are unique for each bacterial species. Understanding the biology of these devices may allow the development of novel prevention and therapeutic approaches for several infectious diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                1 November 1999
                : 147
                : 3
                : 683-693
                Affiliations
                [a ]Unité de Pathogénie Microbienne Moléculaire INSERM U389, Institut Pasteur, 75724 Paris Cedex 15, France
                [b ]Station Centrale de Microscopie Electronique, Institut Pasteur, 75724 Paris Cedex 15, France
                [c ]Laboratoire de Chimie Physique des Macromolécules aux Interfaces, Université Libre de Bruxelles, B-1050 Brussels, Belgium
                Article
                9907003
                10.1083/jcb.147.3.683
                2151192
                10545510
                e3749109-257a-4c03-a3eb-f4cfb6e46786
                © 1999 The Rockefeller University Press
                History
                : 1 July 1999
                : 21 September 1999
                : 27 September 1999
                Categories
                Original Article

                Cell biology
                microbial pathogenesis,type iii secretion,contact hemolysis,pore formation,membrane protein insertion

                Comments

                Comment on this article