5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulation of Human Colostrum Phagocyte Activity by the Glycine-Adsorbed Polyethylene Glycol Microspheres

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colostrum is a secretion that contains immunologically active components, including immunocompetent cells and glycine, which has anti-inflammatory, immunomodulatory, and cytoprotective effects. The aim of this study was to evaluate the adsorption of glycine onto polyethylene glycol (PEG) microspheres and to verify the immunomodulatory effect of this nanomaterial on human colostrum phagocytes. The PEG microspheres were evaluated by fluorescence microscopy. The effects of PEG microspheres with adsorbed glycine on viability, superoxide release, phagocytosis, microbicidal activity, and intracellular calcium release of mononuclear (MN) and polymorphonuclear (PMN) colostrum phagocytes were determined. Fluorescence microscopy analyses revealed that glycine was able to be adsorbed to the PEG microspheres. The PMN phagocytes exposed to glycine-PEG microspheres showed the highest superoxide levels. The phagocytes (both MN and PMN) displayed increased microbicidal activity and intracellular calcium release in the presence of PEG microspheres with adsorbed glycine. These data suggest that the adsorption of PEG microspheres with adsorbed glycine was able to stimulate the colostrum phagocytes. This material may represent a possible alternative therapy for future clinical applications on patients with gastrointestinal infections.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Polymer microspheres for controlled drug release.

          Polymer microspheres can be employed to deliver medication in a rate-controlled and sometimes targeted manner. Medication is released from a microsphere by drug leaching from the polymer or by degradation of the polymer matrix. Since the rate of drug release is controlled by these two factors, it is important to understand the physical and chemical properties of the releasing medium. This review presents the methods used in the preparation of microspheres from monomers or from linear polymers and discusses the physio-chemical properties that affect the formation, structure, and morphology of the spheres. Topics including the effects of molecular weight, blended spheres, crystallinity, drug distribution, porosity, and sphere size are discussed in relation to the characteristics of the release process. Added control over release profiles can be obtained by the employment of core-shell systems and pH-sensitive spheres; the enhancements presented by such systems are discussed through literature examples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family.

            The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader

                Bookmark

                Author and article information

                Journal
                Journal of Chemistry
                Journal of Chemistry
                Hindawi Limited
                2090-9063
                2090-9071
                2013
                2013
                : 2013
                : 1-8
                Affiliations
                [1 ]Institute of Biological and Health Science, Federal University of Mato Grosso (UFMT), Rodovia Br 070, Km 5 s/no, 78600-000 Barra do Garças, MT, Brazil
                Article
                10.1155/2013/845270
                e382cb5d-d264-4b83-b346-2abc5f6a6293
                © 2013

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article