29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A number of neurophysiological characteristics demonstrated in autism share the common theme of under-connectivity in the cerebral cortex. One of the prominent theories of the cause of the dysfunctional connectivity in autism is based on distinct anatomical structures that differ between the autistic and the neurotypical cortex. The functional minicolumn has been identified as occupying a much smaller space in the cortex of people with autism as compared to neurotypical controls, and this aberration in architecture has been proposed to lead to under-connectivity at the local or within-macrocolumn level, which in turn leads to dysfunctional connectivity globally across cortical areas in persons with autism. Numerous reports have indicated reduced synchronization of activity on a large scale in the brains of people with autism. We hypothesized that if the larger-scale aberrant dynamics in autism were due – at least in part – to a widespread propagation of the errors introduced at the level of local connectivity between minicolumns, then aberrations in local functional connectivity should also be detectable in autism.

          Methods

          Recently, we reported a method for measuring the perceptual changes that are impacted by the presence of synchronized conditioning stimuli on the skin. In this study, the temporal order judgment (TOJ) and temporal discriminative threshold (TDT) of 10 adult autism subjects were assessed both in the absence and presence of synchronized conditioning vibrotactile stimuli.

          Results

          Our previous report demonstrated that delivering simultaneous and synchronized vibrotactile stimuli to near-adjacent skin sites decreases a subject's ability to determine temporal order by 3 to 4-fold. However, results presented in this report show that subjects with autism do not demonstrate such decreased capacity in temporal order judgment (TOJ) in the presence of synchronized conditioning stimuli, although these same subjects do have TOJ thresholds well above that of controls.

          Conclusion

          It is speculated that the differences in sensory perceptual capacities in the presence of synchronized conditioning stimuli in autism are due to local under-connectivity in cortex at the minicolumnar organizational level, and that the above-average TOJ thresholds in autism could be attributed to structural differences that have been observed in the frontostrial system of this population.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology.

          Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, novel methods of time series analysis have been developed for the examination of task- and performance-related oscillatory activity and its synchronization. Studies employing these advanced techniques revealed that synchronization of oscillatory responses in the beta- and gamma-band is involved in a variety of cognitive functions, such as perceptual grouping, attention-dependent stimulus selection, routing of signals across distributed cortical networks, sensory-motor integration, working memory, and perceptual awareness. Here, we review evidence that certain brain disorders, such as schizophrenia, epilepsy, autism, Alzheimer's disease, and Parkinson's are associated with abnormal neural synchronization. The data suggest close correlations between abnormalities in neuronal synchronization and cognitive dysfunctions, emphasizing the importance of temporal coordination. Thus, focused search for abnormalities in temporal patterning may be of considerable clinical relevance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity.

            The brain activation of a group of high-functioning autistic participants was measured using functional MRI during sentence comprehension and the results compared with those of a Verbal IQ-matched control group. The groups differed in the distribution of activation in two of the key language areas. The autism group produced reliably more activation than the control group in Wernicke's (left laterosuperior temporal) area and reliably less activation than the control group in Broca's (left inferior frontal gyrus) area. Furthermore, the functional connectivity, i.e. the degree of synchronization or correlation of the time series of the activation, between the various participating cortical areas was consistently lower for the autistic than the control participants. These findings suggest that the neural basis of disordered language in autism entails a lower degree of information integration and synchronization across the large-scale cortical network for language processing. The article presents a theoretical account of the findings, related to neurobiological foundations of underconnectivity in autism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Model of autism: increased ratio of excitation/inhibition in key neural systems.

              Autism is a severe neurobehavioral syndrome, arising largely as an inherited disorder, which can arise from several diseases. Despite recent advances in identifying some genes that can cause autism, its underlying neurological mechanisms are uncertain. Autism is best conceptualized by considering the neural systems that may be defective in autistic individuals. Recent advances in understanding neural systems that process sensory information, various types of memories and social and emotional behaviors are reviewed and compared with known abnormalities in autism. Then, specific genetic abnormalities that are linked with autism are examined. Synthesis of this information leads to a model that postulates that some forms of autism are caused by an increased ratio of excitation/inhibition in sensory, mnemonic, social and emotional systems. The model further postulates that the increased ratio of excitation/inhibition can be caused by combinatorial effects of genetic and environmental variables that impinge upon a given neural system. Furthermore, the model suggests potential therapeutic interventions.
                Bookmark

                Author and article information

                Journal
                Behav Brain Funct
                Behavioral and Brain Functions : BBF
                BioMed Central
                1744-9081
                2008
                24 April 2008
                : 4
                : 19
                Affiliations
                [1 ]Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
                [2 ]Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
                Article
                1744-9081-4-19
                10.1186/1744-9081-4-19
                2374789
                18435849
                e38cb1ca-f98b-41d2-bdec-578121b7f3e6
                Copyright © 2008 Tommerdahl et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 February 2008
                : 24 April 2008
                Categories
                Research

                Neurology
                Neurology

                Comments

                Comment on this article