14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Flavour-active volatile compounds in beer: production, regulation and control : Flavour-active volatile compounds in beer: production, regulation and control

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Improving industrial yeast strains: exploiting natural and artificial diversity

          Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation.

            Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Flavor-active esters: Adding fruitiness to beer

                Bookmark

                Author and article information

                Journal
                Journal of the Institute of Brewing
                J. Inst. Brew.
                Wiley
                00469750
                January 2017
                January 2017
                March 19 2017
                : 123
                : 1
                : 13-23
                Affiliations
                [1 ]Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 Republic of South Africa
                Article
                10.1002/jib.389
                e38dd197-e926-4b47-b9d0-8b14138ecc89
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article