13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV), listed in the most dangerous pathogens by the World Health Organization, has 12-30% fatality rates with a characteristic thrombocytopenia syndrome. With a majority of clinically diagnosed SFTSV patients older than ~50 years of age, age is a critical risk factor for SFTSV morbidity and mortality. Here, we report an age-dependent ferret model of SFTSV infection and pathogenesis that fully recapitulates the clinical manifestations of human infections. Whereas young adult ferrets (≤2 years of age) did not show any clinical symptoms and mortality, SFTSV-infected aged ferrets (≥4 years of age) demonstrated severe thrombocytopenia, reduced white blood cell counts and high fever with 93% mortality rate. Moreover, a significantly higher viral load was observed in aged ferrets. Transcriptome analysis of SFTSV-infected young ferrets revealed strong interferon-mediated anti-viral signalling, whereas inflammatory immune responses were markedly upregulated and persisted in aged ferrets. Thus, this immunocompetent age-dependent ferret model should be useful for anti-SFTSV therapy and vaccine development.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model.

          The discovery of an emerging viral disease, severe fever with thrombocytopenia syndrome (SFTS), caused by SFTS virus (SFTSV), has prompted the need to understand pathogenesis of SFTSV. We are unique in establishing an infectious model of SFTS in C57/BL6 mice, resulting in hallmark symptoms of thrombocytopenia and leukocytopenia. Viral RNA and histopathological changes were identified in the spleen, liver, and kidney. However, viral replication was only found in the spleen, which suggested the spleen to be the principle target organ of SFTSV. Moreover, the number of macrophages and platelets were largely increased in the spleen, and SFTSV colocalized with platelets in cytoplasm of macrophages in the red pulp of the spleen. In vitro cellular assays further revealed that SFTSV adhered to mouse platelets and facilitated the phagocytosis of platelets by mouse primary macrophages, which in combination with in vivo findings, suggests that SFTSV-induced thrombocytopenia is caused by clearance of circulating virus-bound platelets by splenic macrophages. Thus, this study has elucidated the pathogenic mechanisms of thrombocytopenia in a mouse model resembling human SFTS disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Systematic review of severe fever with thrombocytopenia syndrome:virology, epidemiology, and clinical characteristics

            Severe fever with thrombocytopenia syndrome (SFTS) was firstly discovered in China in 2010, followed by several reports from many other countries worldwide. SFTS virus (SFTSV) has been identified as the causative agent of the disease and has been recognized as a public health threat. This novel Bunyavirus belongs to the Phlebovirus genus in the family Bunyaviridae. This review also describes the different aspects of virology, pathogenesis, epidemiology, and clinical symptoms on the basis of the published article surveillance data and phylogenetic analyses of viral sequences of large, medium, and small segments retrieved from database using mega 5.05, simplot 3.5.1, network 4.611, and epi information system 3.5.3 software. SFTS presents with fever, thrombocytopenia, leukocytopenia, and considerable changes in several serum biomarkers. The disease has 10 ∼ 15% mortality rate, commonly because of multiorgan dysfunction. SFTSV is mainly reported in the rural areas of Central and North-Eastern China, with seasonal occurrence from May to September, mainly targeting those of ≥50 years of age. A wide range of domesticated animals, including sheep, goats, cattle, pigs, dogs, and chickens have been proven seropositive for SFTSV. Ticks, especially Haemaphysalis longicornis, are suspected to be the potential vector, which have a broad animal host range in the world. More studies are needed to elucidate the vector–animal–human ecological cycle, the pathogenic mechanisms in high level animal models and vaccine development. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current status of severe fever with thrombocytopenia syndrome in China.

              Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTS virus (SFTSV). SFTSV is associated with a high mortality rate and has been reported in China, South Korea and Japan. SFTSV undergoes rapid changes owing to evolution, gene mutations, and reassortment between different strains of SFTSV. In this review, we summarize the recent cases and general properties of SFTS, focusing on the epidemiology, genetic diversity, clinical features, and diagnostics of SFTSV in China. From 2010 to October 2016, SFTS cases were reported in 23 provinces of China, with increased numbers yearly. Infection and death cases are mainly found in central China, where the Haemaphysalis longicornis ticks are spread. The national average mortality rate of SFTS infection was 5.3%, with higher risk to elder people. The main epidemic period was from May to July, with a peak in May. Thus, SFTS reminds a significant public health problem, and development of prophylactic vaccines and effective antiviral drugs will be highly needed.
                Bookmark

                Author and article information

                Journal
                Nature Microbiology
                Nat Microbiol
                Springer Nature
                2058-5276
                December 10 2018
                Article
                10.1038/s41564-018-0317-1
                6548318
                30531978
                e39459ea-e774-4254-ac40-444f4464836d
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article