9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whether nucleic acids that circulate in blood have any patho-physiological functions in the host have not been explored.We report here that far from being inert molecules, circulating nucleic acids have significant biological activities of their own that are deleterious to healthy cells of the body. Fragmented DNA and chromatin (DNAfs and Cfs) isolated from blood of cancer patients and healthy volunteers are readily taken up by a variety of cells in culture to be localized in their nuclei within a few minutes. The intra-nuclear DNAfs and Cfs associate themselves with host cell chromosomes to evoke a cellular DNA-damage-repair-response (DDR) followed by their incorporation into the host cell genomes. Whole genome sequencing detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic incorporation of DNAfs and Cfs leads to dsDNA breaks and activation of apoptotic pathways in the treated cells. When injected intravenously into Balb/C mice, DNAfs and Cfs undergo genomic integration into cells of their vital organs resulting in activation of DDR and apoptotic proteins in the recipient cells. Cfs have significantly greater activity than DNAfs with respect to all parameters examined, while both DNAfs and Cfs isolated from cancer patients are more active than those from normal volunteers. All the above pathological actions of DNAfs and Cfs described above can be abrogated by concurrent treatment with DNase I and/or anti-histone antibody complexed nanoparticles both in vitro and in vivo. Taken together, our results suggest that circulating DNAfs and Cfs are physiological, continuously arising, endogenous DNA damaging agents with implications to ageing and a multitude of human pathologies including initiation of cancer.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Basic local alignment search tool.

          A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The UCSC Table Browser data retrieval tool.

            The University of California Santa Cruz (UCSC) Table Browser (http://genome.ucsc.edu/cgi-bin/hgText) provides text-based access to a large collection of genome assemblies and annotation data stored in the Genome Browser Database. A flexible alternative to the graphical-based Genome Browser, this tool offers an enhanced level of query support that includes restrictions based on field values, free-form SQL queries and combined queries on multiple tables. Output can be filtered to restrict the fields and lines returned, and may be organized into one of several formats, including a simple tab- delimited file that can be loaded into a spreadsheet or database as well as advanced formats that may be uploaded into the Genome Browser as custom annotation tracks. The Table Browser User's Guide located on the UCSC website provides instructions and detailed examples for constructing queries and configuring output.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              DNA damage, aging, and cancer.

                Bookmark

                Author and article information

                Journal
                Journal of Biosciences
                J Biosci
                Springer Science and Business Media LLC
                0250-5991
                0973-7138
                March 2015
                February 28 2015
                March 2015
                : 40
                : 1
                : 91-111
                Article
                10.1007/s12038-015-9508-6
                25740145
                e39ac1e1-bc9b-4c7b-8cc2-e893b7356675
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article