16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial Progenitor Cell Cotransplantation Enhances Islet Engraftment by Rapid Revascularization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Impaired revascularization of transplanted islets is a critical problem that leads to progressive islet loss. Since endothelial progenitor cells (EPCs) are known to aid neovascularization, we aimed to enhance islet engraftment by cotransplanting EPCs with islets. Porcine islets, with (islet-EPC group) or without (islet-only group) human cord blood–derived EPCs, were transplanted into diabetic nude mice. The islet-EPC group reached euglycemia by ∼11 days posttransplantation, whereas the islet-only group did not. Also, the islet-EPC group had a higher serum porcine insulin level than the islet-only group. Islets from the islet-EPC group were more rapidly revascularized at the early period of transplantation without increment of final capillary density at the fully revascularized graft. Enhanced revascularization rate in the islet-EPC group was mainly attributed to stimulating vascular endothelial growth factor-A production from the graft. The rapid revascularization by EPC cotransplantation led to better graft perfusion and recovery from hypoxia. EPC cotransplantation was also associated with greater β-cell proliferation, probably by more basement membrane production and hepatocyte growth factor secretion. In conclusion, cotransplantation of EPCs and islets induces better islet engraftment by enhancing the rate of graft revascularization. These findings might provide a directly applicable tool to enhance the efficacy of islet transplantation in clinical practice.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.

          Endothelial progenitor cells (EPC) in one study group is not the same as EPC in other investigators, suggesting that EPC is not a single type of cell population. In this study, we tried to demonstrate the heterogeneity of EPC. We cultured total mononuclear cells from human peripheral blood to get two types of EPC sequentially from the same donors. We called them early EPC and late EPC. Early EPC with spindle shape showed peak growth at 2 to 3 weeks and died at 4 weeks, whereas late EPC with cobblestone shape appeared late at 2 to 3 weeks, showed exponential growth at 4 to 8 weeks, and lived up to 12 weeks. Late EPC was different from early EPC in the expression of VE-cadherin, Flt-1, KDR, and CD45. Late EPC produced more nitric oxide, incorporated more readily into human umbilical vein endothelial cells monolayer, and formed capillary tube better than early EPC. Early EPC secreted angiogenic cytokines (vascular endothelial growth factor, interleukin 8) more so than late EPC during culture in vitro. Both types of EPC showed comparable in vivo vasculogenic capacity. We found two types of EPC from a source of adult peripheral blood that might have different roles in neovasculogenesis based on the identified differences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation.

            Endocrine pancreatic beta cells require endothelial signals for their differentiation and function. However, the molecular basis for such signals remains unknown. Here, we show that beta cells, in contrast to the exocrine pancreatic cells, do not form a basement membrane. Instead, by using VEGF-A, they attract endothelial cells, which form capillaries with a vascular basement membrane next to the beta cells. We have identified laminins, among other vascular basement membrane proteins, as endothelial signals, which promote insulin gene expression and proliferation in beta cells. We further demonstrate that beta1-integrin is required for the beta cell response to the laminins. The proposed mechanism explains why beta cells must interact with endothelial cells, and it may apply to other cellular processes in which endothelial signals are required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function.

              To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occur concomitantly with islet morphogenesis. Our genetic data indicate that vascular endothelial growth factor (VEGF)-A is a major regulator of islet vascularization and revascularization of transplanted islets. In spite of normal pancreatic insulin content and beta-cell mass, mice with beta-cell-reduced VEGF-A expression had impaired glucose-stimulated insulin secretion. By vascular or diffusion delivery of beta-cell secretagogues to islets, we showed that reduced insulin output is not a result of beta-cell dysfunction but rather caused by vascular alterations in islets. Taken together, our data indicate that the microvasculature plays an integral role in islet function. Factors modulating VEGF-A expression may influence islet vascularity and, consequently, the amount of insulin delivered into the systemic circulation.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                April 2012
                14 March 2012
                : 61
                : 4
                : 866-876
                Affiliations
                [1] 1Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
                [2] 2Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
                [3] 3Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
                [4] 4World Class University Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
                [5] 5Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
                Author notes
                Corresponding author: Kyong Soo Park, kspark@ 123456snu.ac.kr .
                Article
                1492
                10.2337/db10-1492
                3314353
                22362173
                e39b5376-fd5a-4fd4-b55f-09ec1b11b97c
                © 2012 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 24 October 2010
                : 12 January 2012
                Categories
                Immunology and Transplantation

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article