28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Uniquely-Processed Titanium on Biological Systems: Implications for Human Health and Performance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Titanium is biocompatible and widely utilized in a variety of applications. Recently, titanium in pico-nanometer scale and soluble form (Aqua Titan) has expanded its use to applied human health and performance. The purpose of this article is to review the current evidence associated with specific physiological responses to Aqua Titan-treated materials. In vitro studies have shown that application of Aqua Titan can modify membrane potential and long-term potentiation in isolated hippocampal neurons, suggesting reduced pain memory as a possible mechanism for reported analgesia. Proximal contact with Aqua Titan-treated titanium increased gene expression, protein synthesis, cell growth and adhesion in normal cultured muscle and bone cells, suggesting application for Aqua Titan in clinical implant procedures and wound healing. Evidence for beneficial effects on neuromuscular control of muscle-tendon function and improvements in running economy in human athletes was seen when Aqua Titan-treated tape was applied to the human triceps surae following fatigue induced by prior strenuous exercise. Finally, behavioral responses and effects on the autonomic nervous system to environmental exposure suggest Aqua Titan may promote a mild relaxant, or stress-suppressive response. Together, data suggest exposure to Aqua Titan-treated materials modulates aspects of growth and function in neuronal and other musculoskeletal cells with possible benefits to musculotendinous recovery from exercise and to the systemic response to stress.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory interactions between muscle and the immune system during muscle regeneration.

          Recent discoveries reveal complex interactions between skeletal muscle and the immune system that regulate muscle regeneration. In this review, we evaluate evidence that indicates that the response of myeloid cells to muscle injury promotes muscle regeneration and growth. Acute perturbations of muscle activate a sequence of interactions between muscle and inflammatory cells. The initial inflammatory response is a characteristic Th1 inflammatory response, first dominated by neutrophils and subsequently by CD68(+) M1 macrophages. M1 macrophages can propagate the Th1 response by releasing proinflammatory cytokines and cause further tissue damage through the release of nitric oxide. Myeloid cells in the early Th1 response stimulate the proliferative phase of myogenesis through mechanisms mediated by TNF-alpha and IL-6; experimental prolongation of their presence is associated with delayed transition to the early differentiation stage of myogenesis. Subsequent invasion by CD163(+)/CD206(+) M2 macrophages attenuates M1 populations through the release of anti-inflammatory cytokines, including IL-10. M2 macrophages play a major role in promoting growth and regeneration; their absence greatly slows muscle growth following injury or modified use and inhibits muscle differentiation and regeneration. Chronic muscle injury leads to profiles of macrophage invasion and function that differ from acute injuries. For example, mdx muscular dystrophy yields invasion of muscle by M1 macrophages, but their early invasion is accompanied by a subpopulation of M2a macrophages. M2a macrophages are IL-4 receptor(+)/CD206(+) cells that reduce cytotoxicity of M1 macrophages. Subsequent invasion of dystrophic muscle by M2c macrophages is associated with progression of the regenerative phase in pathophysiology. Together, these findings show that transitions in macrophage phenotype are an essential component of muscle regeneration in vivo following acute or chronic muscle damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mindfulness meditation improves cognition: evidence of brief mental training.

            Although research has found that long-term mindfulness meditation practice promotes executive functioning and the ability to sustain attention, the effects of brief mindfulness meditation training have not been fully explored. We examined whether brief meditation training affects cognition and mood when compared to an active control group. After four sessions of either meditation training or listening to a recorded book, participants with no prior meditation experience were assessed with measures of mood, verbal fluency, visual coding, and working memory. Both interventions were effective at improving mood but only brief meditation training reduced fatigue, anxiety, and increased mindfulness. Moreover, brief mindfulness training significantly improved visuo-spatial processing, working memory, and executive functioning. Our findings suggest that 4days of meditation training can enhance the ability to sustain attention; benefits that have previously been reported with long-term meditators. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vinculin controls focal adhesion formation by direct interactions with talin and actin

              Focal adhesions (FAs) regulate cell migration. Vinculin, with its many potential binding partners, can interconnect signals in FAs. Despite the well-characterized structure of vinculin, the molecular mechanisms underlying its action have remained unclear. Here, using vinculin mutants, we separate the vinculin head and tail regions into distinct functional domains. We show that the vinculin head regulates integrin dynamics and clustering and the tail regulates the link to the mechanotransduction force machinery. The expression of vinculin constructs with unmasked binding sites in the head and tail regions induces dramatic FA growth, which is mediated by their direct interaction with talin. This interaction leads to clustering of activated integrin and an increase in integrin residency time in FAs. Surprisingly, paxillin recruitment, induced by active vinculin constructs, occurs independently of its potential binding site in the vinculin tail. The vinculin tail, however, is responsible for the functional link of FAs to the actin cytoskeleton. We propose a new model that explains how vinculin orchestrates FAs.
                Bookmark

                Author and article information

                Journal
                J Funct Biomater
                J Funct Biomater
                jfb
                Journal of Functional Biomaterials
                MDPI
                2079-4983
                03 January 2014
                March 2014
                : 5
                : 1
                : 1-14
                Affiliations
                [1 ]School of Sport and Exercise, Massey University, 63 Wallace Street, Wellington 6140, New Zealand; E-Mail: s.p.shultz@ 123456massey.ac.nz
                [2 ]University of California, Los Angeles, School of Dentistry, B3-088H CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1668, USA; E-Mail: togawa@ 123456dentistry.ucla.edu
                [3 ]Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho 1-5, Sakyo-ku, Kyoto 606-8522, Japan; E-Mail: waoi@ 123456koto.kpu-m.ac.jp
                [4 ]Zoological Institute, Technical University of Braunschweig, Spielmannstr. 7, Braunschweig D-38106, Germany; E-Mail: m.korte@ 123456tu-braunschweig.de
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: d.s.rowlands@ 123456massey.ac.nz ; Tel.: +64-4-801-5799 ( ext. 63295); Fax: +64-4-801-4994.
                Article
                jfb-05-00001
                10.3390/jfb5010001
                4030905
                24956353
                e39eb7c5-f06c-429d-bb9f-28584b0aa29a
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 27 August 2013
                : 26 November 2013
                : 27 November 2013
                Categories
                Review

                aqua titan,action potential,long-term potentiation,tendon compliance,musculotendinous function,cell adhesion and growth,autonomic nervous system,pico-nanometer scale

                Comments

                Comment on this article