22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture.

      Molecular and Cellular Biology
      Amino Acid Sequence, Animals, Apoptosis, Base Sequence, Bone Morphogenetic Proteins, Cell Division, Cell Line, Cell Line, Transformed, Cell Transformation, Neoplastic, genetics, DNA, Complementary, Fibroblasts, cytology, Gene Expression Regulation, Neoplastic, Genes, mos, physiology, Molecular Sequence Data, Molecular Weight, Oncogenes, Organ Specificity, Proteins, analysis, chemistry, RNA, Messenger, Rats, Rats, Sprague-Dawley, Sequence Analysis, DNA, Sequence Homology, Amino Acid

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using differential display analysis, we compared the expression of RNA in v-mos-transformed cells and their flat revertant and isolated a novel gene, drm (down-regulated in mos-transformed cells), whose expression is down-regulated in parental v-mos-transformed cells but which is expressed at a high level in the revertant and normal rat fibroblasts (REF-1 cells). Analysis of different oncogene-transformed cells revealed that drm gene expression was also suppressed in REF-1 cells transformed by v-ras, v-src, v-raf, and v-fos. The drm cDNA contains a 184-amino-acid-protein-encoding open reading frame which shows no significant homologies to known genes in DNA databases. Polyclonal antibodies raised against drm peptide detect a protein with the predicted size of 20.7 kDa in normal cells and under nonpermissive conditions in cells conditionally transformed by v-mos but not in parental v-mos-transformed cells. Northern analysis of normal adult tissues shows that drm is expressed as a 4.4-kb message in a tissue-specific manner, with high expression in the brain, spleen, kidney, and testis and little or no expression in the heart, liver, and skeletal muscle. In situ hybridization analysis in adult rat tissue reveals good correlation with this pattern and indicates that drm mRNA is most highly expressed in nondividing and terminally differentiated cells, such as neurons, type 1 lung cells, and goblet cells. Transfection of a drug-selectable drm expression vector dramatically reduced the efficiency of colony formation in REF-1 and CHO cells, and the drm-transfected REF-1 survivors expressed low or nondetectable levels of exogenous drm mRNA. The toxic effects of drm can be overcome by cotransfection with constructs expressing oncogenic ras; furthermore, cells expressing high levels of drm and conditionally transformed with mos-expressing Moloney murine sarcoma virus rapidly undergo apoptosis when shifted to the nonpermissive temperature. Taken together, our data suggest that cells expressing high levels of drm undergo apoptotic death in the absence of oncogene-induced transformation and that drm represents a novel gene with potential roles in cell growth control or viability and tissue-specific differentiation.

          Related collections

          Author and article information

          Comments

          Comment on this article