Blog
About

6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Bartter Syndromes and Other Salt-Losing Tubulopathies

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic studies into rare inborn errors of renal tubular sodium handling in man have brought many interesting, sometimes surprising insights into how we can maintain our bodies’ electrolytes and fluids homeostasis. The cloning and identification of sodium transporting genes and proteins like NHE3, NKCC2, ROMK, CLCNKB, NCC, and EnaC has considerably improved our understanding of renal salt handling. Subsequently, studies of genetically engineered animals provided even more insight into the complex renal physiology. The recent discovery of the WNK kinases as regulators and integrators of specific renal transport pathways helped elucidate this further and lets us start to appreciate the full complexity of renal sodium handling. We summarize recent findings in the field in the context of human diseases and a pathophysiologic basis for their treatment.

          Related collections

          Most cited references 10

          • Record: found
          • Abstract: found
          • Article: not found

          Human hypertension caused by mutations in WNK kinases.

           Z Farfel,  B Dussol,  D. Simon (2001)
          Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion.

            A key question in systems biology is how diverse physiologic processes are integrated to produce global homeostasis. Genetic analysis can contribute by identifying genes that perturb this integration. One system orchestrates renal NaCl and K+ flux to achieve homeostasis of blood pressure and serum K+ concentration. Positional cloning implicated the serine-threonine kinase WNK4 in this process; clustered mutations in PRKWNK4, encoding WNK4, cause hypertension and hyperkalemia (pseudohypoaldosteronism type II, PHAII) by altering renal NaCl and K+ handling. Wild-type WNK4 inhibits the renal Na-Cl cotransporter (NCCT); mutations that cause PHAII relieve this inhibition. This explains the hypertension of PHAII but does not account for the hyperkalemia. By expression in Xenopus laevis oocytes, we show that WNK4 also inhibits the renal K+ channel ROMK. This inhibition is independent of WNK4 kinase activity and is mediated by clathrin-dependent endocytosis of ROMK, mechanisms distinct from those that characterize WNK4 inhibition of NCCT. Most notably, the same mutations in PRKWNK4 that relieve NCCT inhibition markedly increase inhibition of ROMK. These findings establish WNK4 as a multifunctional regulator of diverse ion transporters; moreover, they explain the pathophysiology of PHAII. They also identify WNK4 as a molecular switch that can vary the balance between NaCl reabsorption and K+ secretion to maintain integrated homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis.

              WNK1 and WNK4 [WNK, with no lysine (K)] are serine-threonine kinases that function as molecular switches, eliciting coordinated effects on diverse ion transport pathways to maintain homeostasis during physiological perturbation. Gain-of-function mutations in either of these genes cause an inherited syndrome featuring hypertension and hyperkalemia due to increased renal NaCl reabsorption and decreased K(+) secretion. Here, we reveal unique biochemical and functional properties of WNK3, a related member of the WNK kinase family. Unlike WNK1 and WNK4, WNK3 is expressed throughout the nephron, predominantly at intercellular junctions. Because WNK4 is a potent inhibitor of members of the cation-cotransporter SLC12A family, we used coexpression studies in Xenopus oocytes to investigate the effect of WNK3 on NCC and NKCC2, related kidney-specific transporters that mediate apical NaCl reabsorption in the thick ascending limb and distal convoluted tubule, respectively. In contrast to WNK4's inhibitory activity, kinase-active WNK3 is a potent activator of both NKCC2 and NCC-mediated transport. Conversely, in its kinase-inactive state, WNK3 is a potent inhibitor of NKCC2 and NCC activity. WNK3 regulates the activity of these transporters by altering their expression at the plasma membrane. Wild-type WNK3 increases and kinase-inactive WNK3 decreases NKCC2 phosphorylation at Thr-184 and Thr-189, sites required for the vasopressin-mediated plasmalemmal translocation and activation of NKCC2 in vivo. The effects of WNK3 on these transporters and their coexpression in renal epithelia implicate WNK3 in NaCl, water, and blood pressure homeostasis, perhaps via signaling downstream of vasopressin.
                Bookmark

                Author and article information

                Journal
                NEP
                Nephron Physiol
                10.1159/issn.1660-2137
                Nephron Physiology
                S. Karger AG
                1660-2137
                2006
                September 2006
                28 September 2006
                : 104
                : 2
                : p73-p80
                Affiliations
                aSection on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, and bOffice of Rare Diseases, Office of the Director, National Institutes of Health, Bethesda, Md., USA; cGreat Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London, UK
                Article
                94001 Nephron Physiol 2006;104:p73–p80
                10.1159/000094001
                16785747
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Tables: 1, References: 17, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/94001
                Categories
                Minireview

                Comments

                Comment on this article