+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical and Metabolic Profiling of Si-Ni Decoction Analogous Formulae by High performance Liquid Chromatography-Mass Spectrometry

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Along with an indispensable role in healthcare system of China for centuries, Traditional Chinese Medicine (TCM) shows increasing usages as complementary therapy in western countries. To improve our understanding on their therapeutic effects, it’s critical to unveil chemical compositions of TCM formula, the predominant form of therapy in TCM. However, intrinsic chemical complexity makes it a challenging task to perform analysis on each individual TCM formula even with most current state-of-art analytic techniques available. In this work we approached this question by focusing on analogous formulae, a unique category of TCM formulae grouped together based on shared herbs and/or similar TCM syndromes. Systematic chemical profiling on five Si-Ni decoctions (SNs) for cardiovascular diseases was performed by multistage MS and high-resolution MS (HR-MS) experiments. A total of 83 compounds, including alkaloids, flavonoids, ginsenosides, bile acids and triterpenoids, were described. Analysis on SNs-treated rats detected 55 prototype compounds and 39 metabolites in the systemic circulation in vivo, which may contribute directly to their observed clinical efficacies. This approach offers great advantage to speed up identification of chemical compositions of formula and reveal the difference among these analogous formulae that may be related to diverse clinical effects.

          Related collections

          Most cited references 44

          • Record: found
          • Abstract: not found
          • Article: not found

          Atherosclerosis--an inflammatory disease.

           R. Ross,  Paul O'Byrne (1999)
            • Record: found
            • Abstract: found
            • Article: not found

            Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds.

            The roots and rhizomes of licorice (Glycyrrhiza) species have long been used worldwide as a herbal medicine and natural sweetener. Licorice root is a traditional medicine used mainly for the treatment of peptic ulcer, hepatitis C, and pulmonary and skin diseases, although clinical and experimental studies suggest that it has several other useful pharmacological properties such as antiinflammatory, antiviral, antimicrobial, antioxidative, anticancer activities, immunomodulatory, hepatoprotective and cardioprotective effects. A large number of components have been isolated from licorice, including triterpene saponins, flavonoids, isoflavonoids and chalcones, with glycyrrhizic acid normally being considered to be the main biologically active component. This review summarizes the phytochemical, pharmacological and pharmacokinetics data, together with the clinical and adverse effects of licorice and its bioactive components. Copyright (c) 2008 John Wiley & Sons, Ltd.
              • Record: found
              • Abstract: found
              • Article: not found

              Obesity, inflammation, and cardiovascular risk.

              Obesity, a highly prevalent condition, is heterogeneous with regard to its impact on cardiovascular disease (CVD) risk. Epidemiological observations and metabolic investigations have consistently demonstrated that the accumulation of excess visceral fat is related to an increased risk of CVD as well as several metabolic and inflammatory perturbations. In the past decade, data from several studies have served to emphasize that atherosclerosis has an inflammatory component that may contribute to several key pathophysiological processes. Study data have also highlighted the finding that the expanded visceral fat is infiltrated by macrophages that conduct "cross-talk" with adipose tissue through several significant mechanisms. In this review, we provide, in the context of CVD risk, an up-to-date account of the complex interactions that occur between a dysfunctional adipose tissue phenotype and inflammation.

                Author and article information

                [1 ]Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
                Author notes
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                29 June 2015
                : 5
                26118924 4484491 srep11638 10.1038/srep11638
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit




                Comment on this article