14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A sequential Monte Carlo approach to estimate a time-varying reproduction number in infectious disease models: the Covid-19 case

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Covid-19 pandemic has required most countries to implement complex sequences of non-pharmaceutical interventions, with the aim of controlling the transmission of the virus in the population. To be able to take rapid decisions, a detailed understanding of the current situation is necessary. Estimates of time-varying, instantaneous reproduction numbers represent a way to quantify the viral transmission in real time. They are often defined through a mathematical compartmental model of the epidemic, like a stochastic SEIR model, whose parameters must be estimated from multiple time series of epidemiological data. Because of very high dimensional parameter spaces (partly due to the stochasticity in the spread models) and incomplete and delayed data, inference is very challenging. We propose a state-space formalization of the model and a sequential Monte Carlo approach which allow to estimate a daily-varying reproduction number for the Covid-19 epidemic in Norway with sufficient precision, on the basis of daily hospitalization and positive test incidences. The method was in regular use in Norway during the pandemics and appears to be a powerful instrument for epidemic monitoring and management.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe

          Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing

            The newly emergent human virus SARS-CoV-2 is resulting in high fatality rates and incapacitated health systems. Preventing further transmission is a priority. We analyzed key parameters of epidemic spread to estimate the contribution of different transmission routes and determine requirements for case isolation and contact-tracing needed to stop the epidemic. We conclude that viral spread is too fast to be contained by manual contact tracing, but could be controlled if this process was faster, more efficient and happened at scale. A contact-tracing App which builds a memory of proximity contacts and immediately notifies contacts of positive cases can achieve epidemic control if used by enough people. By targeting recommendations to only those at risk, epidemics could be contained without need for mass quarantines (‘lock-downs’) that are harmful to society. We discuss the ethical requirements for an intervention of this kind.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics

              Abstract The quantification of transmissibility during epidemics is essential to designing and adjusting public health responses. Transmissibility can be measured by the reproduction number R, the average number of secondary cases caused by an infected individual. Several methods have been proposed to estimate R over the course of an epidemic; however, they are usually difficult to implement for people without a strong background in statistical modeling. Here, we present a ready-to-use tool for estimating R from incidence time series, which is implemented in popular software including Microsoft Excel (Microsoft Corporation, Redmond, Washington). This tool produces novel, statistically robust analytical estimates of R and incorporates uncertainty in the distribution of the serial interval (the time between the onset of symptoms in a primary case and the onset of symptoms in secondary cases). We applied the method to 5 historical outbreaks; the resulting estimates of R are consistent with those presented in the literature. This tool should help epidemiologists quantify temporal changes in the transmission intensity of future epidemics by using surveillance data.
                Bookmark

                Author and article information

                Journal
                Journal of the Royal Statistical Society Series A: Statistics in Society
                Oxford University Press (OUP)
                0964-1998
                1467-985X
                October 2023
                December 22 2023
                April 27 2023
                October 2023
                December 22 2023
                April 27 2023
                : 186
                : 4
                : 616-632
                Article
                10.1093/jrsssa/qnad043
                e3cc91e1-499f-47b2-b1f8-144287c6b650
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article