+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Growth Responses in Isolated Elastic, Muscular and Resistance-Sized Arterial Segments of the Rat

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          To evaluate whether intravascular phenomena contribute to local differences in growth responses of the arterial wall, we evaluated responses to organoid culture in a broad variety of arterial preparations. Arterial segments were isolated from adult, normotensive rats, sympathectomized, denuded from endothelium, and suspended in medium supplemented with serum. As judged from the nuclear incorporation of the thymidine analogue 5-bromo-2’-deoxyuridine (BrdUrd), this induced a transient stimulation of DNA synthesis in only a fraction of the arterial smooth muscle cells in all types of arteries. This intramedial DNA synthesis was more marked in renal arteries than in carotid arteries or aortae and was least pronounced in main pulmonary, femoral, and superior mesenteric artery and in mesenteric resistance-sized arteries. Organoid culture of isolated arteries did not increase the cross-sectional area of the media or the number of medial cells. It rather resulted in proliferation of smooth-muscle-like cells outside the media. In addition, smooth-muscle-like cells migrated out of the isolated arterial segments during culture. The rate of proliferation of these isolated cells did not differ between large arteries of different anatomical origin. However, isolated cells derived from mesenteric resistance arteries proliferated at a rate that was 4 times slower than that of large artery cells. The presence of endothelium significantly reduced medial DNA synthesis in carotid and renal artery segments, but not in mesenteric resistance-sized preparations. These data indicate that growth responses of the arterial wall differ quantitatively with the anatomical location and branching order of the vascular segment. In addition to the regional heterogeneity of endothelial effects on mitogenic responses of arterial smooth muscle, this seems to be due to regional differences in the susceptibility of arterial smooth muscle to exogenous growth factors. In this respect, we speculate that subsets of growth-resistant and growth-prone arterial smooth muscle cells could be heterogeneously distributed over the arterial tree.

          Related collections

          Author and article information

          J Vasc Res
          Journal of Vascular Research
          S. Karger AG
          23 September 2008
          : 28
          : 5
          : 372-385
          Department of Pharmacology, University of Limburg, Maastricht, The Netherlands
          158884 Blood Vessels 1991;28:372–385
          © 1991 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 14
          Research Paper


          Comment on this article