71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children.

          Methods and Findings

          From 17 August 2009 to 20 May 2010, 524 children aged 5–10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up ( P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of follow-up (PQ arm 1.90/y versus PL arm 7.75/y, incidence rate ratio [IRR] = 0.21 [95% CI 0.15, 0.28], p < 0.001). Children who received PQ were less likely to carry P. vivax gametocytes (IRR = 0.27 [95% CI 0.19, 0.38], p < 0.001). PQ had a comparable effect irrespective of the presence of P. vivax blood-stage infection at the time of treatment ( p = 0.14). Modelling revealed that mass screening and treatment with highly sensitive quantitative real-time PCR, or MDA with blood-stage treatment alone, would have only a transient effect on P. vivax transmission levels, while MDA that includes liver-stage treatment is predicted to be a highly effective strategy for P. vivax elimination. The inclusion of a directly observed 20-d treatment regime maximises the efficiency of hypnozoite clearance but limits the generalisability of results to real-world MDA programmes.

          Conclusions

          These results suggest that relapses cause approximately four of every five P. vivax infections and at least three of every five P. ovale infections in PNG children and are important in sustaining transmission. MDA campaigns combining blood- and liver-stage treatment are predicted to be a highly efficacious intervention for reducing P. vivax and P. ovale transmission.

          Trial registration

          ClinicalTrials.gov NCT02143934

          Abstract

          Ivo Mueller and colleagues conduct a randomized controlled trial of blood-only or blood- plus liver-stage malaria drugs to identify the contribution of relapses to the burden of P. vivax and P. ovale in children in Papua New Guinea, and model the potential impact of mass-drug administration to prevent recurrent P. vivax infections.

          Editors' Summary

          Background

          Malaria is a mosquito-borne parasitic disease caused by Plasmodium falciparum, P. vivax, P. ovale, and P. malariae. Although P. falciparum is responsible for most of the 600,000 malaria deaths that occur every year, P. vivax is the most common, most widely distributed cause of malaria. All malaria parasites have a complex life cycle. When infected mosquitoes bite people, they inject “sporozoites,” a parasitic form that replicates in the liver. After 8–9 days, the liver releases “merozoites,” which invade red blood cells, where they replicate rapidly before bursting out and infecting more red blood cells. This increase in the parasitic burden causes malaria’s recurring flu-like symptoms and can cause organ damage and death. Infected red blood cells also release “gametocytes,” which infect mosquitoes when they take a blood meal. In the mosquito, gametocytes multiply and develop into sporozoites, thus completing the parasite’s life cycle. Malaria can be prevented by controlling the mosquitoes that spread malaria and by avoiding mosquito bites. Treatment with anti-malarial drugs, which is essential to prevent potentially fatal complications, also decreases malaria transmission.

          Why Was This Study Done?

          Malaria control programs have greatly reduced the global malaria burden, but the ability of P. vivax and P. ovale to persist undetected in the liver as “hypnozoites” (another parasitic form) is hindering malaria control and elimination efforts. Hypnozoites can cause malaria relapses months or years after a primary infection and are not cleared by anti-malarial treatment unless the treatment includes primaquine, a drug that has to be given for 7–14 days and that causes hemolysis (red blood cell death) in people who have glucose-6-phosphate dehydrogenase (G6PD) deficiency. Here, the researchers determine the contribution that relapses make to the burden of P. vivax and P. ovale infection, illness, and transmission among Papua New Guinean children by undertaking a randomized placebo-controlled trial of a primaquine treatment regimen. The researchers also use mathematical modeling to investigate the effect of mass drug administration (MDA) on the occurrence of P. vivax relapses. A randomized placebo-controlled trial compares the outcomes of individuals randomly chosen to receive an active treatment or a dummy (placebo) treatment; MDA aims to control malaria by treating entire at-risk populations with anti-malarial drugs.

          What Did the Researchers Do and Find?

          The researchers enrolled 524 children aged 5–10 years (none of whom were G6PD deficient) living in a region of Papua New Guinea where P. falciparum and P. vivax are hyperendemic (always present at high levels). Half the children received a blood-stage plus liver-stage anti-malarial treatment regimen (primaquine arm); the rest received a blood-stage plus placebo anti-malarial treatment regimen (placebo arm). Compared to children in the placebo arm, children in the primaquine arm had a reduced risk of having at least one P. vivax or P. ovale infection detected using PCR (a highly sensitive molecular technique) during eight months of follow-up and a reduced risk of having at least one clinical P. vivax episode. Children in the primaquine arm were also less likely to carry P. vivax gametocytes. Finally, by feeding the trial data into a mathematical transmission model, the researchers predicted that MDA with blood-stage treatment alone, or mass screening and treatment with blood-stage treatment alone or blood- plus liver-stage treatment, would have only a transient effect on P. vivax transmission levels, whereas MDA that includes blood-plus liver-stage treatment would be an effective strategy for P. vivax elimination.

          What Do These Findings Mean?

          From the trial results, the researchers estimate that, among children living in a malaria-hyperendemic region of Papua New Guinea, relapses cause about four of every five P. vivax infections and three of every five P. ovale infections. Thus, P. vivax and P. ovale relapses are important in sustaining malaria transmission in this population. Notably, mathematical modeling predicts that MDA campaigns that combine blood- and liver-stage treatment are likely to be a highly effective strategy for P. vivax elimination. These findings may not be generalizable to populations with lower malaria transmission levels. Also, because the trial used a 20-day drug regimen to maximize the clearance of hypnozoites and because people would need to be tested for G6PD deficiency before starting primaquine treatment, the chosen treatment regimen may not be applicable to real-world MDA programs. Nevertheless, these findings highlight the importance of developing new anti-hypnozoite drugs and MDA programs that target areas and risk groups with confirmed local transmission of P. vivax to achieve global malaria control and elimination.

          Additional Information

          This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001891.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The changing epidemiology of malaria elimination: new strategies for new challenges.

          Malaria-eliminating countries achieved remarkable success in reducing their malaria burdens between 2000 and 2010. As a result, the epidemiology of malaria in these settings has become more complex. Malaria is increasingly imported, caused by Plasmodium vivax in settings outside sub-Saharan Africa, and clustered in small geographical areas or clustered demographically into subpopulations, which are often predominantly adult men, with shared social, behavioural, and geographical risk characteristics. The shift in the populations most at risk of malaria raises important questions for malaria-eliminating countries, since traditional control interventions are likely to be less effective. Approaches to elimination need to be aligned with these changes through the development and adoption of novel strategies and methods. Knowledge of the changing epidemiological trends of malaria in the eliminating countries will ensure improved targeting of interventions to continue to shrink the malaria map. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite.

            Plasmodium vivax is geographically the most widely distributed cause of malaria in people, with up to 2.5 billion people at risk and an estimated 80 million to 300 million clinical cases every year--including severe disease and death. Despite this large burden of disease, P vivax is overlooked and left in the shadow of the enormous problem caused by Plasmodium falciparum in sub-Saharan Africa. The technological advances enabling the sequencing of the P vivax genome and a recent call for worldwide malaria eradication have together placed new emphasis on the importance of addressing P vivax as a major public health problem. However, because of this parasite's biology, it is especially difficult to interrupt the transmission of P vivax, and experts agree that the available methods for preventing and treating infections with P vivax are inadequate. It is thus imperative that the development of new methods and strategies become a priority. Advancing the development of such methods needs renewed emphasis on understanding the biology, pathogenesis, and epidemiology of P vivax. This Review critically examines what is known about P vivax, focusing on identifying the crucial gaps that create obstacles to the elimination of this parasite in human populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Determinants of relapse periodicity in Plasmodium vivax malaria

              Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important implications for the assessment of radical treatment efficacy and for malaria control and elimination.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                plos
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, CA USA )
                1549-1277
                1549-1676
                27 October 2015
                October 2015
                : 12
                : 10
                : e1001891
                Affiliations
                [1 ]Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
                [2 ]Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
                [3 ]Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
                [4 ]Molecular Diagnostics Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
                [5 ]University of Basel, Basel, Switzerland
                [6 ]MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
                [7 ]Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
                [8 ]School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, Australia
                [9 ]ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic–University of Barcelona, Barcelona, Spain
                Mahidol-Oxford Tropical Medicine Research Unit, THAILAND
                Author notes

                The authors have declared the following competing interests: IM has acted as an Academic Editor for PLOS Medicine.

                Conceived and designed the experiments: IM LS QB IF PS. Performed the experiments: LJR RW IB BK AW NH LL NT JB. Analyzed the data: CSNLWS SK MS LS MW LJR IM. Contributed to the writing of the manuscript: IF SK RW MS QB CSNLWS NH. All authors have read, and confirm that they meet, ICMJE criteria for authorship. Wrote the first draft of the manuscript: LJR SK MW IM. Agree with the manuscript’s results and conclusions: LJR RW IB MW SK BK CSNLWS AW NH JB LL NT LS MS QB PS LS IF IM. Enrolled patients: BK IB LJR.

                Article
                PMEDICINE-D-14-03200
                10.1371/journal.pmed.1001891
                4624431
                26505753
                e3e4d494-08fc-4b9f-9e11-95dfb823ac38
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 October 2014
                : 17 September 2015
                Page count
                Figures: 6, Tables: 5, Pages: 26
                Funding
                This work was supported by the TransEPI consortium funded by the Bill & Melinda Gates, the NHMRC (#1021544) Foundation Swiss National Science Foundation Grant [grant 310030_134889], the Cellex Foundation and International Centers of Excellence in Malaria Research [grant U19 AI089686). This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS. LJR is supported by an NHMRC Early Career Fellowship #1016443. MW is supported by an MRC Population Health Scientist Fellowship. SK is supported by an NHMRC Early Career Fellowship #1052760. QB has a fellowship from the program Miguel Servet of the ISCIII (Plan Nacional de I+D+I 2008-2011, grant number: CP11/00269). IM is support by an NHMRC Senior Research Fellowship (#1043345). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All data files are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.m1n03.

                Medicine
                Medicine

                Comments

                Comment on this article