14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication of Surface Plasmon Resonance Sensor Surface with Control of the Non-Specific Adsorption and Affinity for the Detection of 2,4,6-Trinitrotoluene Using an Antifouling Copolymer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We fabricated a surface plasmon resonance (SPR) sensor using a hydrophilic polymer for the highly sensitive detection of 2,4,6-trinitrotoluene (TNT). The hydrophilic polymer was made from mono-2-(methacryloyloxy)ethylsuccinate (MES) and 2-hydroxyethylmethacrylate (HEMA) by surface-initiated atom transfer radical polymerization. The detection of TNT was carried out by displacement assay with the SPR measurement. In displacement assay, the affinity between anti-TNT antibody and the sensor surface, affects to the sensitivity. In the SPR measurement, non-specific adsorption should be controlled because SPR sensor cannot discriminate between specific and non-specific adsorption. Therefore, the affinity and non-specific adsorption were controlled by changing the ratio of HEMA to MES. A detection limit of 0.4 ng/ml (ppb) for TNT was achieved using a sensor surface with the lowest affinity without non-specific adsorption.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          Polymer brushes: surface-immobilized macromolecules

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite.

            A bis-aniline-cross-linked Au nanoparticles (NPs) composite is electropolymerized on Au surfaces. The association of trinitrotoluene, TNT, to the bis-aniline bridging units via pi-donor-acceptor interactions allows the amplified detection of TNT by following the surface plasmon resonance (SPR) reflectance changes as a result of the coupling between the localized plasmon of the AuNPs and the surface plasmon wave associated with the gold surface. The detection limit for analyzing TNT by this method is approximately 10 pM. The electropolymerization of the bis-aniline-cross-linked AuNPs composite in the presence of picric acid results in a molecular-imprinted matrix for the enhanced binding of TNT. The imprinted AuNPs composite enabled the sensing of TNT with a detection limit that corresponded to 10 fM. Analysis of the SPR reflectance changes in the presence of different concentrations of TNT revealed a two-step calibration curve that included the ultrasensitive detection of TNT by the imprinted sites in the composite, KassI. for the association of TNT to the imprinted sites, 6.4 x 10(12) M-1, followed by a less sensitive detection of TNT by the nonimprinted pi-donor bis-aniline sites (KNIass. = 3.9 x 10(9) M-1). The imprinted AuNPs composite reveals impressive selectivity. The structural and functional features of the bis-aniline-cross-linked AuNPs composites were characterized by different methods including ellipsometry, AFM, and electrochemical means. The dielectric properties of the AuNPs composite in the presence of different concentrations of TNT were evaluated by the theoretical fitting of the respective experimental SPR curves. The ultrasensitive detection of the TNT by the AuNPs composite was attributed to the changes of the dielectric properties of the composite, as a result of the formation of the pi-donor-acceptor complexes between TNT and the bis-aniline units. These changes in the dielectric properties lead to a change in the conductivity of the AuNPs matrix.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode.

              An electrochemical sensor for ultratrace nitroaromatic compounds (NACs) using mesoporous SiO2 of MCM-41 as sensitive materials is reported. MCM-41 was synthesized and characterized by scanning electron microscope, transmission electron microscopy, and small-angle X-ray diffraction. Glassy carbon electrodes modified with MCM-41 show high sensitivity for cathodic voltammetric detection of NACs (including 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene, and 1,3-dinitrobenzene) down to the nanomolar level. The high sensitivity is attributed to the strong adsorption of NACs by MCM-41 and large surface area of the working electrode resulting from MCM-41 modification. The voltammetric response is fast, and the detection of NACs can be finished within 14 s. SiO2 nanospheres were similarly used to modify glassy carbon electrodes for electrochemical detection of TNT and TNB. The detection limit of SiO2 nanosphere-modified electrodes is lower than that of MCM-41-modified electrodes, possibly due to the smaller surface area of SiO2 nanospheres than mesoporous MCM-41. The results show mesoporous SiO2-modified glassy carbon electrodes, particularly MCM-41-modified electrodes, open new opportunities for fast, simple, and sensitive field analysis of NACs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                29 April 2014
                2014
                : 2
                : 10
                Affiliations
                [1] 1Research and Development Center for Taste and Odor Sensing, Kyushu University , Fukuoka, Japan
                [2] 2Graduate School of Information Science and Electrical Engineering, Kyushu University , Fukuoka, Japan
                Author notes

                Edited by: Danilo Emilio De Rossi, University of Pisa, Italy

                Reviewed by: Arti Ahluwalia, Polytechnic of Milan, Italy; Giovanni Vozzi, University of Pisa, Italy; Laurent Simon, New Jersey Institute of Technology, USA

                *Correspondence: Kiyoshi Toko, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan e-mail: toko@ 123456ed.kyushu-u.ac.jp

                This article was submitted to Bionics and Biomimetics, a section of the journal Frontiers in Bioengineering and Biotechnology.

                Article
                10.3389/fbioe.2014.00010
                4126440
                25152884
                e3e62ce5-f2d0-4fff-9439-d7e72b1f65d3
                Copyright © 2014 Yatabe, Onodera and Toko.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 November 2013
                : 15 April 2014
                Page count
                Figures: 3, Tables: 3, Equations: 1, References: 21, Pages: 7, Words: 5042
                Categories
                Bioengineering and Biotechnology
                Original Research

                trinitrotoluene,surface plasmon resonance,immunosensor,surface-initiated atom transfer radical polymerization,non-specific adsorption,self-assembled monolayer,displacement assay

                Comments

                Comment on this article