23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Owing to improvements in image recognition via deep learning, machine-learning algorithms could eventually be applied to automated medical diagnoses that can guide clinical decision-making. However, these algorithms remain a 'black box' in terms of how they generate the predictions from the input data. Also, high-performance deep learning requires large, high-quality training datasets. Here, we report the development of an understandable deep-learning system that detects acute intracranial haemorrhage (ICH) and classifies five ICH subtypes from unenhanced head computed-tomography scans. By using a dataset of only 904 cases for algorithm training, the system achieved a performance similar to that of expert radiologists in two independent test datasets containing 200 cases (sensitivity of 98% and specificity of 95%) and 196 cases (sensitivity of 92% and specificity of 95%). The system includes an attention map and a prediction basis retrieved from training data to enhance explainability, and an iterative process that mimics the workflow of radiologists. Our approach to algorithm development can facilitate the development of deep-learning systems for a variety of clinical applications and accelerate their adoption into clinical practice.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Learning Deep Features for Discriminative Localization

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging

            Purpose To evaluate the performance of an artificial intelligence (AI) tool using a deep learning algorithm for detecting hemorrhage, mass effect, or hydrocephalus (HMH) at non-contrast material-enhanced head computed tomographic (CT) examinations and to determine algorithm performance for detection of suspected acute infarct (SAI). Materials and Methods This HIPAA-compliant retrospective study was completed after institutional review board approval. A training and validation dataset of noncontrast-enhanced head CT examinations that comprised 100 examinations of HMH, 22 of SAI, and 124 of noncritical findings was obtained resulting in 2583 representative images. Examinations were processed by using a convolutional neural network (deep learning) using two different window and level configurations (brain window and stroke window). AI algorithm performance was tested on a separate dataset containing 50 examinations with HMH findings, 15 with SAI findings, and 35 with noncritical findings. Results Final algorithm performance for HMH showed 90% (45 of 50) sensitivity (95% confidence interval [CI]: 78%, 97%) and 85% (68 of 80) specificity (95% CI: 76%, 92%), with area under the receiver operating characteristic curve (AUC) of 0.91 with the brain window. For SAI, the best performance was achieved with the stroke window showing 62% (13 of 21) sensitivity (95% CI: 38%, 82%) and 96% (27 of 28) specificity (95% CI: 82%, 100%), with AUC of 0.81. Conclusion AI using deep learning demonstrates promise for detecting critical findings at noncontrast-enhanced head CT. A dedicated algorithm was required to detect SAI. Detection of SAI showed lower sensitivity in comparison to detection of HMH, but showed reasonable performance. Findings support further investigation of the algorithm in a controlled and prospective clinical setting to determine whether it can independently screen noncontrast-enhanced head CT examinations and notify the interpreting radiologist of critical findings. © RSNA, 2017 Online supplemental material is available for this article.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The relative performance of ensemble methods with deep convolutional neural networks for image classification

              Artificial neural networks have been successfully applied to a variety of machine learning tasks, including image recognition, semantic segmentation, and machine translation. However, few studies fully investigated ensembles of artificial neural networks. In this work, we investigated multiple widely used ensemble methods, including unweighted averaging, majority voting, the Bayes Optimal Classifier, and the (discrete) Super Learner, for image recognition tasks, with deep neural networks as candidate algorithms. We designed several experiments, with the candidate algorithms being the same network structure with different model checkpoints within a single training process, networks with same structure but trained multiple times stochastically, and networks with different structure. In addition, we further studied the over-confidence phenomenon of the neural networks, as well as its impact on the ensemble methods. Across all of our experiments, the Super Learner achieved best performance among all the ensemble methods in this study.
                Bookmark

                Author and article information

                Journal
                Nature Biomedical Engineering
                Nat Biomed Eng
                Springer Nature
                2157-846X
                December 17 2018
                Article
                10.1038/s41551-018-0324-9
                30948806
                e3e86235-a7fc-4802-8fc4-21302436fce3
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article