18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Components in the Formation of Self-microemulsifying Drug Delivery Systems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pharmaceutical research is focused in designing novel drug delivery systems to improve the bioavailability of poorly water soluble drugs. Self-microemulsifying drug delivery systems, one among the lipid-based dosage forms were proven to be promising in improving the oral bioavailability of such drugs by enhancing solubility, permeability and avoiding first-pass metabolism via enhanced lymphatic transport. Further, they have been successful in avoiding both inter and intra individual variations as well as the dose disproportionality. Aqueous insoluble drugs, in general, show greater solubility in lipid based excipients, and hence they are formulated as lipid based drug delivery systems. The extent of solubility of a hydrophobic drug in lipid excipients i.e. oil, surfactant and co-surfactant (components of self-microemulsifying drug delivery systems) greatly affects the drug loading and in producing stable self-microemulsifying drug delivery systems. The present review highlighted the influence of physicochemical factors and structural features of the hydrophobic drug on its solubility in lipid excipients and an attempt was made to explore the role of each component of self-microemulsifying drug delivery systems in the formation of stable microemulsion upon dilution.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Microemulsion-based media as novel drug delivery systems.

          Microemulsions are clear, stable, isotropic mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. These systems are currently of interest to the pharmaceutical scientist because of their considerable potential to act as drug delivery vehicles by incorporating a wide range of drug molecules. In order to appreciate the potential of microemulsions as delivery vehicles, this review gives an overview of the formation and phase behaviour and characterization of microemulsions. The use of microemulsions and closely related microemulsion-based systems as drug delivery vehicles is reviewed, with particular emphasis being placed on recent developments and future directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications.

            The poor oral bioavailability arising from poor aqueous solubility should make drug research and development more difficult. Various approaches have been developed with a focus on enhancement of the solubility, dissolution rate, and oral bioavailability of poorly water-soluble drugs. To complete development works within a limited amount of time, the establishment of a suitable formulation strategy should be a key consideration for the pharmaceutical development of poorly water-soluble drugs. In this article, viable formulation options are reviewed on the basis of the biopharmaceutics classification system of drug substances. The article describes the basic approaches for poorly water-soluble drugs, such as crystal modification, micronization, amorphization, self-emulsification, cyclodextrin complexation, and pH modification. Literature-based examples of the formulation options for poorly water-soluble compounds and their practical application to marketed products are also provided. Classification of drug candidates based on their biopharmaceutical properties can provide an indication of the difficulty of drug development works. A better understanding of the physicochemical and biopharmaceutical properties of drug substances and the limitations of each delivery option should lead to efficient formulation development for poorly water-soluble drugs. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs.

              Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of poorly water-soluble drugs, their commercial use has been very limited, primarily because of manufacturing difficulties and stability problems. Solid dispersions of drugs were generally produced by melt or solvent evaporation methods. The materials, which were usually semisolid and waxy in nature, were hardened by cooling to very low temperatures. They were then pulverized, sieved, mixed with relatively large amounts of excipients, and encapsulated into hard gelatin capsules or compressed into tablets. These operations were difficult to scale up for the manufacture of dosage forms. The situation has, however, been changing in recent years because of the availability of surface-active and self-emulsifying carriers and the development of technologies to encapsulate solid dispersions directly into hard gelatin capsules as melts. Solid plugs are formed inside the capsules when the melts are cooled to room temperature. Because of surface activity of carriers used, complete dissolution of drug from such solid dispersions can be obtained without the need for pulverization, sieving, mixing with excipients, etc. Equipment is available for large-scale manufacturing of such capsules. Some practical limitations of dosage form development might be the inadequate solubility of drugs in carriers and the instability of drugs and carriers at elevated temperatures necessary to manufacture capsules.
                Bookmark

                Author and article information

                Journal
                Indian J Pharm Sci
                Indian J Pharm Sci
                IJPhS
                Indian Journal of Pharmaceutical Sciences
                Medknow Publications & Media Pvt Ltd (India )
                0250-474X
                1998-3743
                May-Jun 2015
                : 77
                : 3
                : 249-257
                Affiliations
                [1]Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
                [1 ]Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
                Author notes
                [* ] Address for correspondence E-mail: ms.reddy@ 123456manipal.edu
                Article
                IJPhS-77-249
                10.4103/0250-474x.159596
                4502138
                26180269
                e3e8da06-5fd0-4d78-b12b-962232dd986f
                Copyright: © Indian Journal of Pharmaceutical Sciences

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 23 March 2014
                : 23 November 2014
                : 17 April 2015
                Categories
                Review Article

                Pharmacology & Pharmaceutical medicine
                lipid based delivery systems,partition coefficient,solubility,electrostatic interaction,interfacial tension

                Comments

                Comment on this article