9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Improved Tumor Uptake by Optimizing Liposome Based RES Blockade Strategy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Minimizing the sequestration of nanomaterials (NMs) by the reticuloendothelial system (RES) can enhance the circulation time of NMs, and thus increase their tumor-specific accumulation. Liposomes are generally regarded as safe (GRAS) agents that can block the RES reversibly and temporarily. With the help of positron emission tomography (PET), we monitored the in vivo tissue distribution of 64Cu-labeled 40 × 10 nm gold nanorods (Au NRs) after pretreatment with liposomes. We systematically studied the effectiveness of liposome administration by comparing (1) differently charged liposomes; (2) different liposome doses; and (3) varying time intervals between liposome dose and NR dose. By pre-injecting 400 μmol/kg positively charged liposomes into mice 5 h before the Au NRs, the liver and spleen uptakes of Au NRs decreased by 30% and 53%, respectively. Significantly, U87MG tumor uptake of Au NRs increased from 11.5 ± 1.1 %ID/g to 16.1 ± 1.3 %ID/g at 27 h post-injection. Quantitative PET imaging is a valuable tool to understand the fate of NMs in vivo and cationic liposomal pretreatment is a viable approach to reduce RES clearance, prolong circulation, and improve tumor uptake.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of nanoparticle delivery to tumours

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications.

            Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanorods: from synthesis and properties to biological and biomedical applications.

              Noble metal nanoparticles are capable of confining resonant photons in such a manner as to induce coherent surface plasmon oscillation of their conduction band electrons, a phenomenon leading to two important properties. Firstly, the confinement of the photon to the nanoparticle's dimensions leads to a large increase in its electromagnetic field and consequently great enhancement of all the nanoparticle's radiative properties, such as absorption and scattering. Moreover, by confining the photon's wavelength to the nanoparticle's small dimensions, there exists enhanced imaging resolving powers, which extend well below the diffraction limit, a property of considerable importance in potential device applications. Secondly, the strongly absorbed light by the nanoparticles is followed by a rapid dephasing of the coherent electron motion in tandem with an equally rapid energy transfer to the lattice, a process integral to the technologically relevant photothermal properties of plasmonic nanoparticles. Of all the possible nanoparticle shapes, gold nanorods are especially intriguing as they offer strong plasmonic fields while exhibiting excellent tunability and biocompatibility. We begin this review of gold nanorods by summarizing their radiative and nonradiative properties. Their various synthetic methods are then outlined with an emphasis on the seed-mediated chemical growth. In particular, we describe nanorod spontaneous self-assembly, chemically driven assembly, and polymer-based alignment. The final section details current studies aimed at applications in the biological and biomedical fields. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2017
                1 January 2017
                : 7
                : 2
                : 319-328
                Affiliations
                [1 ]State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
                [2 ]Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States.
                [3 ]Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
                Author notes
                ✉ Corresponding author: shawn.chen@ 123456nih.gov .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov07p0319
                10.7150/thno.18078
                5197067
                28042337
                e404f8bd-ca2d-4567-a2fb-c06b5a93a826
                Copyright @ 2017
                History
                : 25 October 2016
                : 29 November 2016
                Categories
                Research Paper

                Molecular medicine
                reticuloendothelial system,nanoparticle,liposome blockade,positron emission tomography,enhanced tumor uptake.

                Comments

                Comment on this article