53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.

          Author Summary

          A unique feature of apicomplexan parasites is the formation of an intimate contact between the apex of the parasite and the host cell membrane called the moving junction that moves along the parasite during invasion. Proteins originated from two distinct secretory organelles, the microneme for AMA1 and the rhoptry neck for RON2/4/5 proteins, are associated to form the junction. Here, we have furthered the characterization of the MJ complex by describing RON8, an additional protein component. AMA1 has previously been shown to be inserted into the parasite membrane upon secretion. Our study demonstrates that all the RON proteins are translocated into the host cell, where RON4/5/8 remain associated with the cytoplasmic face of the host cell plasma membrane. Furthermore, we identified a privileged interaction between transmembrane MJ proteins AMA1 and RON2 in vitro. Overall, this led us to propose the first model describing the putative MJ organisation at the interface between the host cell and Toxoplasma. In this original concept, the parasite would export its own receptor (RON2) and ligand (AMA1) on either side of the MJ.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells.

          Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce epithelial cell actin rearrangements resulting in pedestal formation beneath adherent bacteria. This requires the secretion of specific virulence proteins needed for signal transduction and intimate adherence. EPEC interaction induces tyrosine phosphorylation of a protein in the host membrane, Hp90, which is the receptor for the EPEC outer membrane protein, intimin. Hp90-intimin interaction is essential for intimate attachment and pedestal formation. Here, we demonstrate that Hp90 is actually a bacterial protein (Tir). Thus, this bacterial pathogen inserts its own receptor into mammalian cell surfaces, to which it then adheres to trigger additional host signaling events and actin nucleation. It is also tyrosine-phosphorylated upon transfer into the host cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite.

            Toxoplasma gondii is an obligate intracellular parasite that invades a wide range of vertebrate host cells. We demonstrate that invasion is critically dependent on actin filaments in the parasite, but not the host cell. Invasion into cytochalasin D (CD)-resistant host cells was blocked by CD, while parasite mutants invaded wild-type host cells in the presence of drug. CD resistance in Toxoplasma was mediated by a point mutation in the single-copy actin gene ACT1. Transfection of the mutant act1 allele into wild-type Toxoplasma conferred motility and invasion in the presence of CD. We conclude that host cell invasion by Toxoplasma, and likely by related Apicomplexans, is actively powered by an actin-based contractile system in the parasite.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts.

              Invasion of vertebrate cells by the protozoan Toxoplasma gondii is accompanied by regulated protein secretion from three distinct parasite organelles called micronemes, rhoptries, and dense granules. We have compared the kinetics of secretion from these different compartments during host cell invasion using immunofluorescence, immunoelectron microscopy, and quantitative immunoassays. Binding to the host cell triggered apical release of the micronemal protein MIC2 at the tight attachment zone that forms between the parasite and the host cell. In a second step, invagination of the host cell plasma membrane was initiated by discharge of the rhoptry protein ROP1 to form a nascent parasitophorous vacuole (PV). ROP1 was fully discharged into the vacuole by the time invasion was complete. In contrast to these very rapid early events, release of the dense granule markers GRA1 and NTPase was delayed until after the parasite was fully within the PV, eventually peaking at 20 min post-invasion. The sequential triggering of secretion from different organelles implies that their release is governed by separate signals and that their contents mediate distinct phases of intracellular parasitism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2009
                February 2009
                27 February 2009
                : 5
                : 2
                : e1000309
                Affiliations
                [1 ]UMR 5235 CNRS, Université de Montpellier 2, Montpelier, France
                [2 ]UMR CNRS 5203, INSERM U661, Université de Montpellier 1 and 2, Montpelier, France
                University of Michigan, United States of America
                Author notes

                Conceived and designed the experiments: JFD ML. Performed the experiments: SB AM JP. Analyzed the data: SB. Contributed reagents/materials/analysis tools: JFD. Wrote the paper: SB ML.

                Article
                08-PLPA-RA-1135R3
                10.1371/journal.ppat.1000309
                2642630
                19247437
                e4168760-6402-47ff-a08e-96f63a5052f4
                Besteiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 September 2008
                : 23 January 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Parasitology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article