+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A non-catalytic role of choline kinase alpha is important in promoting cancer cell survival

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Choline kinase alpha (ChoKα) is regarded as an attractive cancer target. The enzyme catalyses the formation of phosphocholine (PCho), an important precursor in the generation of phospholipids essential for cell growth. ChoKα has oncogenic properties and is critical for the survival of cancer cells. Overexpression of the ChoKα protein can transform noncancer cells into cells with a cancerous phenotype, and depletion of the ChoKα protein can result in cancer cell death. However, the mechanisms underlying the tumourigenic properties of ChoKα are not fully understood. ChoKα was recently demonstrated to associate with other oncogenic proteins, raising the possibility that a non-catalytic protein scaffolding function drives the tumourigenic properties of ChoKα rather than a catalytic function. In order to differentiate these two roles, we compared the impact on cancer cell survival using two tools specific for ChoKα: (1) small interfering RNA (siRNA) to knockdown the ChoKα protein levels; and (2) compound V-11-0711, a novel potent and selective ChoKα inhibitor (ChoKα IC50 20 nℳ), to impede the catalytic activity. Both treatments targeted the endogenous ChoKα protein in HeLa cells, as demonstrated by a substantial reduction in the PCho levels. siRNA knockdown of the ChoKα protein in HeLa cells resulted in significant cell death through apoptosis. In contrast, compound V-11-0711 caused a reversible growth arrest. This suggests that inhibition of ChoKα catalytic activity alone is not sufficient to kill cancer cells, and leads us to conclude that there is a role for the ChoKα protein in promoting cancer cell survival that is independent of its catalytic activity.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          The Kennedy pathway--De novo synthesis of phosphatidylethanolamine and phosphatidylcholine.

          The glycerophospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) account for greater than 50% of the total phospholipid species in eukaryotic membranes and thus play major roles in the structure and function of those membranes. In most eukaryotic cells, PC and PE are synthesized by an aminoalcoholphosphotransferase reaction, which uses sn-1,2-diradylglycerol and either CDP-choline or CDP-ethanolamine, respectively. This is the last step in a biosynthetic pathway known as the Kennedy pathway, so named after Eugene Kennedy who elucidated it over 50 years ago. This review will cover various aspects of the Kennedy pathway including: each of the biosynthetic steps, the functions and roles of the phospholipid products PC and PE, and how the Kennedy pathway has the potential of being a chemotherapeutic target against cancer and various infectious diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Alterations of choline phospholipid metabolism in ovarian tumor progression.

            Recent characterization of abnormal phosphatidylcholine metabolism in tumor cells by nuclear magnetic resonance (NMR) has identified novel fingerprints of tumor progression that are potentially useful as clinical diagnostic indicators. In the present study, we analyzed the concentrations of phosphatidylcholine metabolites, activities of phosphocholine-producing enzymes, and uptake of [methyl-14C]choline in human epithelial ovarian carcinoma cell lines (EOC) compared with normal or immortalized ovary epithelial cells (EONT). Quantification of phosphatidylcholine metabolites contributing to the 1H NMR total choline resonance (3.20-3.24 ppm) revealed intracellular [phosphocholine] and [total choline] of 2.3 +/- 0.9 and 5.2 +/- 2.4 nmol/10(6) cells, respectively, with a glycerophosphocholine/phosphocholine ratio of 0.95 +/- 0.93 in EONT cells; average [phosphocholine] was 3- to 8-fold higher in EOC cells (P < 0.0001), becoming the predominant phosphatidylcholine metabolite, whereas average glycerophosphocholine/phosphocholine values decreased significantly to < or =0.2. Two-dimensional (phosphocholine/total choline, [total choline]) and (glycerophosphocholine/total choline, [total choline]) maps allowed separate clustering of EOC from EONT cells (P < 0.0001, 95% confidence limits). Rates of choline kinase activity in EOC cells were 12- to 24-fold higher (P < 0.03) than those in EONT cells (basal rate, 0.5 +/- 0.1 nmol/10(6) cells/h), accounting for a consistently elevated (5- to 15-fold) [methyl-14C]choline uptake after 1-hour incubation (P < 0.0001). The overall activity of phosphatidylcholine-specific phospholipase C and phospholipase D was also higher ( approximately 5-fold) in EOC cells, suggesting that both biosynthetic and catabolic pathways of the phosphatidylcholine cycle likely contribute to phosphocholine accumulation. Evidence of abnormal phosphatidylcholine metabolism might have implications in EOC biology and might provide an avenue to the development of noninvasive clinical tools for EOC diagnosis and treatment follow-up.
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of choline kinase alpha to predict outcome in patients with early-stage non-small-cell lung cancer: a retrospective study.

              Adequate prognostic markers to predict outcome of patients with lung cancer are still needed. The aim of this study was to assess whether choline kinase alpha (ChoKalpha) gene expression could identify patients with different prognoses. ChoKalpha is an enzyme involved in cell metabolism and proliferation and has a role in oncogene-mediated transformation in several human tumours, including lung cancer. 60 patients with non-small-cell lung cancer (NSCLC) who had undergone surgical resection in a single centre were enrolled into the study as the training group. We used real-time reverse-transcriptase PCR (RT-PCR) to measure ChoKalpha gene expression and analyse the association between ChoKalpha expression and survival in evaluable patients. Additionally, a second group of 120 patients with NSCLC from a different hospital were enrolled into the study as the validation group. We did an overall analysis of all 167 patients who had available tissue to confirm the cut-off point for future studies. The primary endpoints were lung-cancer-specific survival and relapse-free survival. Seven of the 60 patients in the training group were not evaluable due to insufficient tissue. In the 53 evaluable patients, the cut-off for those with ChoKalpha overexpression was defined by receiver operator under the curve (ROC) methodology. 4-year lung-cancer-specific survival was 54.43% (95% CI 28.24-80.61) for 25 patients with ChoKalpha expression above the ROC-defined cut-off compared with 88.27% (75.79-100) for 28 patients with concentrations of the enzyme below this cut-off (hazard ratio [HR] 3.14 [0.83-11.88], p=0.07). In the validation group, six of the 120 enrolled patients were not evaluable due to insufficient tissue. For the other 114 patients, 4-year lung-cancer-specific survival was 46.66% (32.67-59.65) for those with ChoKalpha expression above the ROC-defined cut-off compared with 67.01% (50.92-81.11) for patients with concentrations of ChoKalpha below the cut-off (HR 1.87 [1.01-3.46], p=0.04). A global analysis of all 167 patients further confirmed the association between ChoKalpha overexpression and worse clinical outcome of patients with NSCLC: 4-year lung-cancer-specific survival for ChoKalpha expression above the ROC-defined cut-off was 49.00% (36.61-60.38) compared with 70.52% (59.80-76.75) for those with concentrations of ChoKalpha below the cut-off (HR 1.98 [1.14-3.45], p=0.01). The overall analysis confirmed the cut-off for ChoKalpha expression should be 1.91-times higher than concentrations noted in healthy tissues when ChoKalpha is used as an independent predictive factor of relapse-free and lung-cancer-specific survival in patients with early-stage NSCLC. ChoKalpha expression is a new prognostic factor that could be used to help identify patients with early-stage NSCLC who might be at high risk of recurrence, and to identify patients with favourable prognosis who could receive less aggressive treatment options or avoid adjuvant systemic treatment. New treatments that inhibit ChoKalpha expression or activity in patients with lung cancer should be studied further.

                Author and article information

                [1 ]Vertex Pharmaceuticals (Europe) Limited , Abingdon, Oxfordshire, UK
                [2 ]Vertex Pharmaceuticals Inc , Cambridge, MA, USA
                Author notes
                [* ]Vertex Pharmaceuticals (Europe) Limited , 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, UK. E-mail: Hardy_Sundaram@
                Nature Publishing Group
                March 2013
                25 March 2013
                1 March 2013
                : 2
                : 3
                : e38
                Copyright © 2013 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit

                Short Communication

                Oncology & Radiotherapy

                choline kinase alpha, apoptosis, scaffolding, inhibitor, sirna


                Comment on this article