15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats

      Hydrobiologia
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Parasites in food webs: the ultimate missing links

          Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parasites dominate food web links.

            Parasitism is the most common animal lifestyle, yet food webs rarely include parasites. The few earlier studies have indicated that including parasites leads to obvious increases in species richness, number of links, and food chain length. A less obvious result was that adding parasites slightly reduced connectance, a key metric considered to affect food web stability. However, reported reductions in connectance after the addition of parasites resulted from an inappropriate calculation. Two alternative corrective approaches applied to four published studies yield an opposite result: parasites increase connectance, sometimes dramatically. In addition, we find that parasites can greatly affect other food web statistics, such as nestedness (asymmetry of interactions), chain length, and linkage density. Furthermore, whereas most food webs find that top trophic levels are least vulnerable to natural enemies, the inclusion of parasites revealed that mid-trophic levels, not low trophic levels, suffered the highest vulnerability to natural enemies. These results show that food webs are very incomplete without parasites. Most notably, recognition of parasite links may have important consequences for ecosystem stability because they can increase connectance and nestedness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecosystem energetic implications of parasite and free-living biomass in three estuaries.

              Parasites can have strong impacts but are thought to contribute little biomass to ecosystems. We quantified the biomass of free-living and parasitic species in three estuaries on the Pacific coast of California and Baja California. Here we show that parasites have substantial biomass in these ecosystems. We found that parasite biomass exceeded that of top predators. The biomass of trematodes was particularly high, being comparable to that of the abundant birds, fishes, burrowing shrimps and polychaetes. Trophically transmitted parasites and parasitic castrators subsumed more biomass than did other parasitic functional groups. The extended phenotype biomass controlled by parasitic castrators sometimes exceeded that of their uninfected hosts. The annual production of free-swimming trematode transmission stages was greater than the combined biomass of all quantified parasites and was also greater than bird biomass. This biomass and productivity of parasites implies a profound role for infectious processes in these estuaries.
                Bookmark

                Author and article information

                Journal
                Hydrobiologia
                Hydrobiologia
                Springer Nature
                0018-8158
                1573-5117
                July 2012
                February 2012
                : 691
                : 1
                : 7-19
                Article
                10.1007/s10750-012-1029-9
                e41e6f59-f4ca-4945-9d19-d90696fc010c
                © 2012
                History

                Comments

                Comment on this article