Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      microRNA-23a in Human Cancer: Its Roles, Mechanisms and Therapeutic Relevance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          microRNA-23a (miR-23a) is one of the most extensively studied miRNAs in different types of human cancer, and plays various roles in the initiation, progression, and treatment of tumors. Here, we comprehensively summarize and discuss the recent findings about the role of miR-23a in cancer. The differential expression of tissue miR-23a was reported, potentially indicating cancer stages, angiogenesis, and metastasis. miR-23a in human biofluid, such as plasma and salivary fluid, may be a sensitive and specific marker for early diagnosis of cancer. Tissue and circulating miR-23a serves as a prognostic factor for cancer patient survival, as well as a predictive factor for response to anti-tumor treatment. The direct and indirect regulation of miR-23a on multiple gene expression and signaling transduction mediates carcinogenesis, tumor proliferation, survival, cell migration and invasion, as well as the response to anti-tumor treatment. Tumor cell-derived miR-23a regulates the microenvironment of human cancer through manipulating both immune function and tumor vascular development. Several transcriptional and epigenetic factors may contribute to the dysregulation of miR-23a in cancer. This evidence highlights the essential role of miR-23a in the application of cancer diagnosis, prognosis, and treatment.

          Related collections

          Most cited references 113

          • Record: found
          • Abstract: found
          • Article: not found

          Roles for microRNAs in conferring robustness to biological processes.

          Biological systems use a variety of mechanisms to maintain their functions in the face of environmental and genetic perturbations. Increasing evidence suggests that, among their roles as posttranscriptional repressors of gene expression, microRNAs (miRNAs) help to confer robustness to biological processes by reinforcing transcriptional programs and attenuating aberrant transcripts, and they may in some network contexts help suppress random fluctuations in transcript copy number. These activities have important consequences for normal development and physiology, disease, and evolution. Here, we will discuss examples and principles of miRNAs that contribute to robustness in animal systems. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Circulating Exosomal microRNAs as Biomarkers of Colon Cancer

            Purpose Exosomal microRNAs (miRNAs) have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC). To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined. Experimental Design Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA) using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients. Results The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a) were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis. Conclusion Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and several miRNAs are promising biomarkers for non-invasive diagnosis of the disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines.

              Micro-RNA (miRNA) are endogenous regulatory RNA molecules that modulate gene expression. Alterations in miRNA expression can contribute to tumor growth by modulating the functional expression of critical genes involved in tumor cell proliferation or survival. Our aims were to identify specific miRNA involved in the regulation of cholangiocarcinoma growth and response to chemotherapy. miRNA expression in malignant and nonmalignant human cholangiocytes was assessed using a microarray. Expression of selected miRNA and their precursors was evaluated by Northern blots and real-time polymerase chain reaction, respectively. The effect of selected miRNA on cell growth and response to chemotherapy was assessed using miRNA-specific antisense oligonucleotides to decrease miRNA expression or with precursor miRNA to increase cellular expression. miRNA expression was markedly different in malignant cholangiocytes, with decreased expression of many miRNA compared with nonmalignant cells. A cluster of miRNA, including miR-320, miR-200b, miR-21, miR-23a, miR-141, miR-27a, and miR-34a, were expressed in all cell lines. MiR-21, miR-141, and miR-200b were highly over-expressed in malignant cholangiocytes. Inhibition of miR-21 and miR-200b increased sensitivity to gemcitabine, whereas inhibition of miR-141 decreased cell growth. Treatment of tumor cell xenografts with systemic gemcitabine altered the expression of a significant number of miRNA. miR-21 modulates gemcitabine-induced apoptosis by phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-dependent activation of PI 3-kinase signaling. Potential target genes that were modulated by selected miRNA were identified. Alterations in miRNA expression contribute to tumor growth and response to chemotherapy. Aberrantly expressed miRNA or their targets will provide mechanistic insight and therapeutic targets for cholangiocarcinoma.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                20 December 2018
                January 2019
                : 11
                : 1
                Affiliations
                [1 ]School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; ckwang@ 123456hku.hk (N.W.); hyhtan@ 123456hku.hk (H.-Y.T.); zttc@ 123456hku.hk (C.Z.); fychen@ 123456connect.hku.hk (F.C.)
                [2 ]Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510006, China; ygfeng18@ 123456hotmail.com
                Author notes
                [* ]Correspondence: yfeng@ 123456hku.hk ; Tel.: +852-3917-6482; Fax: +852-2872-5476
                Article
                cancers-11-00007
                10.3390/cancers11010007
                6356664
                30577536
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article