+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      A method and server for predicting damaging missense mutations

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (, which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naïve Bayes classifier (Supplementary Methods). We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naïve Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging. Supplementary Material 1

          Related collections

          Most cited references 6

          • Record: found
          • Abstract: found
          • Article: not found

          Human non-synonymous SNPs: server and survey.

           V. Ramensky (2002)
          Human single nucleotide polymorphisms (SNPs) represent the most frequent type of human population DNA variation. One of the main goals of SNP research is to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. Non-synonymous coding SNPs (nsSNPs) comprise a group of SNPs that, together with SNPs in regulatory regions, are believed to have the highest impact on phenotype. Here we present a World Wide Web server to predict the effect of an nsSNP on protein structure and function. The prediction method enabled analysis of the publicly available SNP database HGVbase, which gave rise to a dataset of nsSNPs with predicted functionality. The dataset was further used to compare the effect of various structural and functional characteristics of amino acid substitutions responsible for phenotypic display of nsSNPs. We also studied the dependence of selective pressure on the structural and functional properties of proteins. We found that in our dataset the selection pressure against deleterious SNPs depends on the molecular function of the protein, although it is insensitive to several other protein features considered. The strongest selective pressure was detected for proteins involved in transcription regulation.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SNPs3D: Candidate gene and SNP selection for association studies

            Background The relationship between disease susceptibility and genetic variation is complex, and many different types of data are relevant. We describe a web resource and database that provides and integrates as much information as possible on disease/gene relationships at the molecular level. Description The resource has three primary modules. One module identifies which genes are candidates for involvement in a specified disease. A second module provides information about the relationships between sets of candidate genes. The third module analyzes the likely impact of non-synonymous SNPs on protein function. Disease/candidate gene relationships and gene-gene relationships are derived from the literature using simple but effective text profiling. SNP/protein function relationships are derived by two methods, one using principles of protein structure and stability, the other based on sequence conservation. Entries for each gene include a number of links to other data, such as expression profiles, pathway context, mouse knockout information and papers. Gene-gene interactions are presented in an interactive graphical interface, providing rapid access to the underlying information, as well as convenient navigation through the network. Use of the resource is illustrated with aspects of the inflammatory response and hypertension. Conclusion The combination of SNP impact analysis, a knowledge based network of gene relationships and candidate genes, and access to a wide range of data and literature allow a user to quickly assimilate available information, and so develop models of gene-pathway-disease interaction.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              SNAP predicts effect of mutations on protein function

              Summary: Many non-synonymous single nucleotide polymor-phisms (nsSNPs) in humans are suspected to impact protein function. Here, we present a publicly available server implementation of the method SNAP (screening for non-acceptable polymorphisms) that predicts the functional effects of single amino acid substitutions. SNAP identifies over 80% of the non-neutral mutations at 77% accuracy and over 76% of the neutral mutations at 80% accuracy at its default threshold. Each prediction is associated with a reliability index that correlates with accuracy and thereby enables experimentalists to zoom into the most promising predictions. Availability: Web-server:; downloadable program available upon request. Contact: Supplementary information: Supplementary data are available at Bioinformatics online.

                Author and article information

                Nat Methods
                Nature methods
                24 March 2010
                April 2010
                1 October 2010
                : 7
                : 4
                : 248-249
                [1 ]Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
                [2 ]Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
                [3 ]Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
                [4 ]Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
                [5 ]Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
                [6 ]European Molecular Biology Laboratory, Heidelberg, Germany
                Author notes
                Correspondence to: Shamil R. Sunyaev 1 ssunyaev@

                These authors contributed equally to this work


                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

                Funded by: National Institute of Mental Health : NIMH
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 MH084676-02 ||MH
                Funded by: National Institute of Mental Health : NIMH
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM078598-03 ||GM

                Life sciences


                Comment on this article