33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion.

      Nature genetics
      Adult, Age of Onset, Aged, Alleles, Amino Acid Sequence, Chromosome Mapping, Chromosomes, Artificial, Yeast, Chromosomes, Human, Pair 3, Cloning, Molecular, Female, Genetic Markers, Genetic Variation, Genomic Imprinting, Humans, Male, Middle Aged, Molecular Sequence Data, Nerve Tissue Proteins, biosynthesis, chemistry, genetics, Retina, pathology, Retinal Degeneration, physiopathology, Spinocerebellar Degenerations, mortality, Trinucleotide Repeats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gene for spinocerebellar ataxia 7 (SCA7) has been mapped to chromosome 3p12-13. By positional cloning, we have identified a new gene of unknown function containing a CAG repeat that is expanded in SCA7 patients. On mutated alleles, CAG repeat size is highly variable, ranging from 38 to 130 repeats, whereas on normal alleles it ranges from 7 to 17 repeats. Gonadal instability in SCA7 is greater than that observed in any of the seven known neuro-degenerative diseases caused by translated CAG repeat expansions, and is markedly associated with paternal transmissions. SCA7 is the first such disorder in which the degenerative process also affects the retina.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.

          Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder characterized by neurodegeneration of the cerebellum, spinal cord and brainstem. A 1.2-Megabase stretch of DNA from the short arm of chromosome 6 containing the SCA1 locus was isolated in a yeast artificial chromosome contig and subcloned into cosmids. A highly polymorphic CAG repeat was identified in this region and was found to be unstable and expanded in individuals with SCA1. There is a direct correlation between the size of the (CAG)n repeat expansion and the age-of-onset of SCA1, with larger alleles occurring in juvenile cases. We also show that the repeat is present in a 10 kilobase mRNA transcript. SCA1 is therefore the fifth genetic disorder to display a mutational mechanism involving an unstable trinucleotide repeat.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT.

            Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant, neurodegenerative disorder that affects the cerebellum and other areas of the central nervous system. We have devised a novel strategy, the direct identification of repeat expansion and cloning technique (DIRECT), which allows selective detection of expanded CAG repeats and cloning of the genes involved. By applying DIRECT, we identified an expanded CAG repeat of the gene for SCA2. CAG repeats of normal alleles range in size from 15 to 24 repeat units, while those of SCA2 chromosomes are expanded to 35 to 59 repeat units. The SCA2 cDNA is predicted to code for 1,313 amino acids-with the CAG repeats coding for a polyglutamine tract. DIRECT is a robust strategy for identification of pathologically expanded trinucleotide repeats and will dramatically accelerate the search for causative genes of neuropsychiatric diseases caused by trinucleotide repeat expansions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias.

              A polyglutamine expansion (encoded by a CAG repeat) in specific proteins causes neurodegeneration in Huntington's disease (HD) and four other disorders, by an unknown mechanism thought to involve gain of function or toxicity of the mutated protein. The pathological threshold is 37-40 glutamines in three of these diseases, whereas the corresponding normal proteins contain polymorphic repeats of up to about 35 glutamines. The age of onset of clinical manifestations is inversely correlated to the length of the polyglutamine expansion. Here we report the characterization of a monoclonal antibody that selectively recognizes polyglutamine expansion in the proteins implicated in HD and in spinocerebellar ataxia (SCA) 1 and 3. The intensity of signal depends on the length of the polyglutamine expansion, and the antibody also detects specific pathological proteins expected to contain such expansion, in SCA2 and in autosomal dominant cerebellar ataxia with retinal degeneration, whose genes have not yet been identified.
                Bookmark

                Author and article information

                Comments

                Comment on this article