14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular mechanisms related to colistin resistance in Enterobacteriaceae

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections.

          The emergence of multidrug-resistant gram-negative bacteria and the lack of new antibiotics to combat them have led to the revival of polymyxins, an old class of cationic, cyclic polypeptide antibiotics. Polymyxin B and polymyxin E (colistin) are the 2 polymyxins used in clinical practice. Most of the reintroduction of polymyxins during the last few years is related to colistin. The polymyxins are active against selected gram-negative bacteria, including Acinetobacter species, Pseudomonas aeruginosa, Klebsiella species, and Enterobacter species. These drugs have been used extensively worldwide for decades for local use. However, parenteral use of these drugs was abandoned approximately 20 years ago in most countries, except for treatment of patients with cystic fibrosis, because of reports of common and serious nephrotoxicity and neurotoxicity. Recent studies of patients who received intravenous polymyxins for the treatment of serious P. aeruginosa and Acinetobacter baumannii infections of various types, including pneumonia, bacteremia, and urinary tract infections, have led to the conclusion that these antibiotics have acceptable effectiveness and considerably less toxicity than was reported in old studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

            Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli

              ABSTRACT The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3. The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia coli. mcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                IDR
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                24 April 2019
                2019
                : 12
                : 965-975
                Affiliations
                [1 ]Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
                [2 ]Student Research Committee, Tabriz University of Medical Sciences , Tabriz, Iran
                [3 ]Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
                [4 ]Department of Microbiology, Baku State University , Baku, Azerbaijan
                [5 ]Department of Microbiology, Iran University of Medical Sciences , Tehran, Iran
                [6 ]Department of Biotechnology, College of Science, University of Baghdad , Baghdad, Iraq
                [7 ]Department of Microbiology, Maragheh University of Medical Sciences , Maragheh, Iran
                [8 ]Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
                [9 ]Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
                Author notes
                Correspondence: Hossein Samadi KafilDrug Applied Research Center, Faculty of Medical Sciences, Tabriz University of Medical Sciences , Tabriz, 5166614766, IranTel +98 912 718 4735Fax +98 413 336 4661Email Kafilhs@ 123456tbzmed.ac.ir
                Article
                199844
                10.2147/IDR.S199844
                6519339
                31190901
                e440f5cb-4ae5-4f72-ab03-e1ae15ac92d2
                © 2019 Aghapour et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 29 December 2018
                : 04 March 2019
                Page count
                Figures: 1, Tables: 1, References: 139, Pages: 11
                Categories
                Review

                Infectious disease & Microbiology
                colistin,enterobacteriaceae,two-component system,lipid a,mcr genes

                Comments

                Comment on this article