31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuronal and Endothelial Nitric Oxide Synthases in the Paraventricular Nucleus Modulate Sympathetic Overdrive in Insulin-Resistant Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

          G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperinsulinemia as an independent risk factor for ischemic heart disease.

            Prospective studies suggest that hyperinsulinemia may be an important risk factor for ischemic heart disease. However, it has not been determined whether plasma insulin levels are independently related to ischemic heart disease after adjustment for other risk factors, including plasma lipoprotein levels. In 1985 we collected blood samples from 2103 men from suburbs of Quebec City, Canada, who were 45 to 76 years of age and who did not have ischemic heart disease. A first ischemic event (angina pectoris, acute myocardial infarction or death from coronary heart disease) occurred in 114 men (case patients) between 1985 and 1990. Each case patient was matched for age, body-mass index, smoking habits, and alcohol consumption with a control selected from among the 1989 men who remained free of ischemic heart disease during follow-up. After excluding men with diabetes, we compared fasting plasma insulin and lipoprotein concentrations at base line in 91 case patients and 105 controls. Fasting insulin concentrations at base line were 18 percent higher in the case patients than in the controls (P<0.001). Logistic-regression analysis showed that the insulin concentration remained associated with ischemic heart disease (odds ratio for ischemic heart disease with each increase of 1 SD in the insulin concentration, 1.7; 95 percent confidence interval, 1.3 to 2.4) after adjustment for systolic blood pressure, use of medications, and family history of ischemic heart disease. Further adjustment by multivariate analysis for plasma triglyceride, apolipoprotein B, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol concentrations did not significantly diminish the association between the insulin concentration and the risk of ischemic heart disease (odds ratio, 1.6; 95 percent confidence interval, 1.1 to 2.3). High fasting insulin concentrations appear to be an independent predictor of ischemic heart disease in men.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fructose-induced insulin resistance and hypertension in rats.

              To determine if hypertension could be produced in normal rats by feeding them a fructose-enriched diet, Sprague-Dawley rats were fed either normal chow or a diet containing 66% fructose as a percentage of total calories for approximately 2 weeks. At the end of this period systolic blood pressure had increased from 124 +/- 2 to 145 +/- 2 (SEM) mm Hg in the fructose-fed rats, whereas no change occurred in the control group. In addition, hyperinsulinemia and hypertriglyceridemia were associated with hypertension in fructose-fed rats. The addition of clonidine to the drinking water inhibited fructose-induced hypertension, but not the increase in plasma insulin or triglyceride concentration seen in fructose-fed rats. Thus, the metabolic changes associated with fructose-induced hypertension are unlikely to be secondary to an increase in sympathetic activity. Whether or not this is also true of the hypertension remains to be clarified.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                20 October 2015
                2015
                : 10
                : 10
                : e0140762
                Affiliations
                [1 ]Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
                [2 ]Clinical Laboratory of Luyi People's Hospital, Zhoukou 466000, China
                [3 ]Neurology Department of Heze Municipal Hospital, Heze 274000, China
                [4 ]Department of Pediatrics, the Fourth Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
                Universidade de São Paulo, BRAZIL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: Y-BZ. Performed the experiments: Q-BL XM-F NT LD H-JS. Analyzed the data: Y-JW. Contributed reagents/materials/analysis tools: XW. Wrote the paper: Y-BZ.

                Article
                PONE-D-15-13583
                10.1371/journal.pone.0140762
                4613827
                26485682
                e4424f07-7557-441a-a0f2-cdf02e5bf37e
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 26 April 2015
                : 30 September 2015
                Page count
                Figures: 9, Tables: 3, Pages: 18
                Funding
                This work was supported by the funds from the National Natural Science Foundation of China [grant no. 81470539: http://isisn.nsfc.gov.cn/egrantweb/proposal/projectInfo/pubPrjList (Y-bZ) and 81000106: http://isisn.nsfc.gov.cn/egrantindex/funcindex/prjsearch-list (Y-bZ)], the National Natural Science Foundation of the Education Department of Jiangsu Province of China [grant no. BK20141434: [This grant had no online announcements, and relevant documents have been laid in the other section of attach files (Page 82, Line 12) as further proof) (Y-bZ)] and the College Students' Innovative and Entrepreneurial Training Project of Jiangsu Province [grant no. 201410312006Z: http://www.ec.js.edu.cn/art/2014/6/18/art_4266_151258.html (Y-bZ)]. The authors gratefully acknowledge the generous support of the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article