81
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          On December 6 and 7, 2017, the US Department of Health and Human Services (HHS) hosted its first Code-a-Thon event aimed at leveraging technology and data-driven solutions to help combat the opioid epidemic. The authors—an interdisciplinary team from academia, the private sector, and the US Centers for Disease Control and Prevention—participated in the Code-a-Thon as part of the prevention track.

          Objective

          The aim of this study was to develop and deploy a methodology using machine learning to accurately detect the marketing and sale of opioids by illicit online sellers via Twitter as part of participation at the HHS Opioid Code-a-Thon event.

          Methods

          Tweets were collected from the Twitter public application programming interface stream filtered for common prescription opioid keywords in conjunction with participation in the Code-a-Thon from November 15, 2017 to December 5, 2017. An unsupervised machine learning–based approach was developed and used during the Code-a-Thon competition (24 hours) to obtain a summary of the content of the tweets to isolate those clusters associated with illegal online marketing and sale using a biterm topic model (BTM). After isolating relevant tweets, hyperlinks associated with these tweets were reviewed to assess the characteristics of illegal online sellers.

          Results

          We collected and analyzed 213,041 tweets over the course of the Code-a-Thon containing keywords codeine, percocet, vicodin, oxycontin, oxycodone, fentanyl, and hydrocodone. Using BTM, 0.32% (692/213,041) tweets were identified as being associated with illegal online marketing and sale of prescription opioids. After removing duplicates and dead links, we identified 34 unique “live” tweets, with 44% (15/34) directing consumers to illicit online pharmacies, 32% (11/34) linked to individual drug sellers, and 21% (7/34) used by marketing affiliates. In addition to offering the “no prescription” sale of opioids, many of these vendors also sold other controlled substances and illicit drugs.

          Conclusions

          The results of this study are in line with prior studies that have identified social media platforms, including Twitter, as a potential conduit for supply and sale of illicit opioids. To translate these results into action, authors also developed a prototype wireframe for the purposes of detecting, classifying, and reporting illicit online pharmacy tweets selling controlled substances illegally to the US Food and Drug Administration and the US Drug Enforcement Agency. Further development of solutions based on these methods has the potential to proactively alert regulators and law enforcement agencies of illegal opioid sales, while also making the online environment safer for the public.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          The Role of Science in Addressing the Opioid Crisis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Social Media Use and Access to Digital Technology in US Young Adults in 2016

            Background In 2015, 90% of US young adults with Internet access used social media. Digital and social media are highly prevalent modalities through which young adults explore identity formation, and by extension, learn and transmit norms about health and risk behaviors during this developmental life stage. Objective The purpose of this study was to provide updated estimates of social media use from 2014 to 2016 and correlates of social media use and access to digital technology in data collected from a national sample of US young adults in 2016. Methods Young adult participants aged 18-24 years in Wave 7 (October 2014, N=1259) and Wave 9 (February 2016, N=989) of the Truth Initiative Young Adult Cohort Study were asked about use frequency for 11 social media sites and access to digital devices, in addition to sociodemographic characteristics. Regular use was defined as using a given social media site at least weekly. Weighted analyses estimated the prevalence of use of each social media site, overlap between regular use of specific sites, and correlates of using a greater number of social media sites regularly. Bivariate analyses identified sociodemographic correlates of access to specific digital devices. Results In 2014, 89.42% (weighted n, 1126/1298) of young adults reported regular use of at least one social media site. This increased to 97.5% (weighted n, 965/989) of young adults in 2016. Among regular users of social media sites in 2016, the top five sites were Tumblr (85.5%), Vine (84.7%), Snapchat (81.7%), Instagram (80.7%), and LinkedIn (78.9%). Respondents reported regularly using an average of 7.6 social media sites, with 85% using 6 or more sites regularly. Overall, 87% of young adults reported access or use of a smartphone with Internet access, 74% a desktop or laptop computer with Internet access, 41% a tablet with Internet access, 29% a smart TV or video game console with Internet access, 11% a cell phone without Internet access, and 3% none of these. Access to all digital devices with Internet was lower in those reporting a lower subjective financial situation; there were also significant differences in access to specific digital devices with Internet by race, ethnicity, and education. Conclusions The high mean number of social media sites used regularly and the substantial overlap in use of multiple social media sites reflect the rapidly changing social media environment. Mobile devices are a primary channel for social media, and our study highlights disparities in access to digital technologies with Internet access among US young adults by race/ethnicity, education, and subjective financial status. Findings from this study may guide the development and implementation of future health interventions for young adults delivered via the Internet or social media sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              E-Cigarette Surveillance With Social Media Data: Social Bots, Emerging Topics, and Trends

              Background As e-cigarette use rapidly increases in popularity, data from online social systems (Twitter, Instagram, Google Web Search) can be used to capture and describe the social and environmental context in which individuals use, perceive, and are marketed this tobacco product. Social media data may serve as a massive focus group where people organically discuss e-cigarettes unprimed by a researcher, without instrument bias, captured in near real time and at low costs. Objective This study documents e-cigarette–related discussions on Twitter, describing themes of conversations and locations where Twitter users often discuss e-cigarettes, to identify priority areas for e-cigarette education campaigns. Additionally, this study demonstrates the importance of distinguishing between social bots and human users when attempting to understand public health–related behaviors and attitudes. Methods E-cigarette–related posts on Twitter (N=6,185,153) were collected from December 24, 2016, to April 21, 2017. Techniques drawn from network science were used to determine discussions of e-cigarettes by describing which hashtags co-occur (concept clusters) in a Twitter network. Posts and metadata were used to describe where geographically e-cigarette–related discussions in the United States occurred. Machine learning models were used to distinguish between Twitter posts reflecting attitudes and behaviors of genuine human users from those of social bots. Odds ratios were computed from 2x2 contingency tables to detect if hashtags varied by source (social bot vs human user) using the Fisher exact test to determine statistical significance. Results Clusters found in the corpus of hashtags from human users included behaviors (eg, #vaping), vaping identity (eg, #vapelife), and vaping community (eg, #vapenation). Additional clusters included products (eg, #eliquids), dual tobacco use (eg, #hookah), and polysubstance use (eg, #marijuana). Clusters found in the corpus of hashtags from social bots included health (eg, #health), smoking cessation (eg, #quitsmoking), and new products (eg, #ismog). Social bots were significantly more likely to post hashtags that referenced smoking cessation and new products compared to human users. The volume of tweets was highest in the Mid-Atlantic (eg, Pennsylvania, New Jersey, Maryland, and New York), followed by the West Coast and Southwest (eg, California, Arizona and Nevada). Conclusions Social media data may be used to complement and extend the surveillance of health behaviors including tobacco product use. Public health researchers could harness these data and methods to identify new products or devices. Furthermore, findings from this study demonstrate the importance of distinguishing between Twitter posts from social bots and humans when attempting to understand attitudes and behaviors. Social bots may be used to perpetuate the idea that e-cigarettes are helpful in cessation and to promote new products as they enter the marketplace.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                April 2018
                27 April 2018
                : 20
                : 4
                : e10029
                Affiliations
                [1] 1 Division of Infectious Disease and Global Public Health Department of Anesthesiology, School of Medicine University of California San Diego La Jolla, CA United States
                [2] 2 Department of Electrical and Computer Engineering Jacobs School of Engineering University of California San Diego La Jolla, CA United States
                [3] 3 IBM Global Business Services Washington, DC United States
                [4] 4 Centers for Disease Control and Prevention Atlanta, GA United States
                Author notes
                Corresponding Author: Tim Mackey tmackey@ 123456ucsd.edu
                Author information
                http://orcid.org/0000-0002-2191-7833
                http://orcid.org/0000-0001-9795-4844
                http://orcid.org/0000-0002-8941-4124
                http://orcid.org/0000-0003-0761-1800
                http://orcid.org/0000-0002-0363-3343
                Article
                v20i4e10029
                10.2196/10029
                5948414
                29613851
                e4633d96-9ab3-4d98-80e4-ab494988d12f
                ©Tim Mackey, Janani Kalyanam, Josh Klugman, Ella Kuzmenko, Rashmi Gupta. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.04.2018.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 5 February 2018
                : 22 February 2018
                : 27 March 2018
                : 28 March 2018
                Categories
                Original Paper
                Original Paper

                Medicine
                online pharmacies,drug abuse,opioid abuse,machine learning,unsupervised machine learning,prescription drug misuse

                Comments

                Comment on this article