62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus that emerged in the late 1980s in both Europe and North America as the causative agent of porcine reproductive and respiratory syndrome (PRRS), now the most important disease of swine worldwide. Despite extensive characterization of PRRSV proteins by direct analysis and comparison with other arteriviruses, determinants of virulence, pathogenesis and protective immune recognition remain poorly understood. Thus, we hypothesized that additional ORFs are present in the PRRSV genome that may contribute to its biological properties, and so we screened highly purified virions of strain VR2332, the prototype type 2 PRRSV, for evidence of novel polypeptides. A 51 aa polypeptide was discovered that is encoded by an alternative ORF of the subgenomic mRNA encoding the major envelope glycoprotein, GP5, and which is incorporated into virions. The protein, referred to as ORF5a protein, is expressed in infected cells, and pigs infected with PRRSV express anti-ORF5a protein antibodies. A similar ORF is present as an alternative reading frame in all PRRSV subgenomic RNA5 genes and in all other arteriviruses, suggesting that this ORF5a protein plays a significant role in arterivirology. Its discovery also provides a new potential target for immunological and pharmacological intervention in PRRS.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The PredictProtein server.

          PredictProtein (http://www.predictprotein.org) is an Internet service for sequence analysis and the prediction of protein structure and function. Users submit protein sequences or alignments; PredictProtein returns multiple sequence alignments, PROSITE sequence motifs, low-complexity regions (SEG), nuclear localization signals, regions lacking regular structure (NORS) and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions, disulfide-bonds, sub-cellular localization and functional annotations. Upon request fold recognition by prediction-based threading, CHOP domain assignments, predictions of transmembrane strands and inter-residue contacts are also available. For all services, users can submit their query either by electronic mail or interactively via the World Wide Web.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States.

            To estimate the annual cost of infections attributable to porcine reproductive and respiratory syndrome (PRRS) virus to US swine producers. Economic analysis. Data on the health and productivity of PRRS-affected and PRRS-unaffected breeding herds and growing-pig populations were collected from a convenience sample of swine farms in the midwestern United States. Health and productivity variables of PRRS-affected and PRRS-unaffected swine farms were analyzed to estimate the impact of PRRS on specific farms. National estimates of PRRS incidence were then used to determine the annual economic impact of PRRS on US swine producers. PRRS affected breeding herds and growing-pig populations as measured by a decrease in reproductive health, an increase in deaths, and reductions in the rate and efficiency of growth. Total annual economic impact of these effects on US swine producers was estimated at dollar 66.75 million in breeding herds and dollar 493.57 million in growing-pig populations. PRRS imposes a substantial financial burden on US swine producers and causes approximately dollar 560.32 million in losses each year. By comparison, prior to eradication, annual losses attributable to classical swine fever (hog cholera) and pseudorabies were estimated at dollar 364.09 million and dollar 36.27 million, respectively (adjusted on the basis of year 2004 dollars). Current PRRS control strategies are not predictably successful; thus, PRRS-associated losses will continue into the future. Research to improve our understanding of ecologic and epidemiologic characteristics of the PRRS virus and technologic advances (vaccines and diagnostic tests) to prevent clinical effects are warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server

              When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30–65% of all predicted signal peptides and 25–35% of all predicted transmembrane topologies overlap. This impairs predictions of 5–10% of the proteome, hence this is an important issue in protein annotation. To address this problem, we previously designed a hidden Markov model, Phobius, that combines transmembrane topology and signal peptide predictions. The method makes an optimal choice between transmembrane segments and signal peptides, and also allows constrained and homology-enriched predictions. We here present a web interface (http://phobius.cgb.ki.se and http://phobius.binf.ku.dk) to access Phobius.
                Bookmark

                Author and article information

                Journal
                J Gen Virol
                JGV
                vir
                The Journal of General Virology
                Society for General Microbiology
                0022-1317
                1465-2099
                May 2011
                : 92
                : Pt 5
                : 1107-1116
                Affiliations
                [1]Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
                Author notes
                Correspondence Michael P. Murtaugh murta001@ 123456umn.edu
                Article
                030213
                10.1099/vir.0.030213-0
                3139420
                21307222
                e4655fc8-da89-422f-9802-3c9c30854187
                Copyright @ 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 January 2011
                : 07 February 2011
                Funding
                Funded by: National Research Initiative of the USDA Cooperative State Research, Education and Extension Service
                Award ID: 3004-35204-14208
                Categories
                Standard
                Animal
                RNA
                Custom metadata
                David Eyre
                Marianne Asbury
                free
                0

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article